8.6 Factor $a x^{2}+b x+c$

Before
Now
Why?
You factored trinomials of the form $x^{2}+b x+c$.
You will factor trinomials of the form $a x^{2}+b x+c$.
So you can find the dimensions of a building, as in Ex. 61.

Key Vocabulary

- trinomial

When factoring a trinomial of the form $a x^{2}+b x+c$, first consider the signs of b and c, as shown below. This approach works when a is positive.
CC.9-12.A.SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines.

REVIEW FACTORING

 You may want to review determining the signs of the factors of a trinomial.
EXAMPLE 1 Factor when b is negative and c is positive

Factor $2 x^{2}-7 x+3$

Solution

Because b is negative and c is positive, both factors of c must be negative. Make a table to organize your work.

You must consider the order of the factors of 3 , because the x-terms of the possible factorizations are different.

Factors of 2	Factors of 3	Possible factorization	Middle term when multiplied	x
1, 2	-1, -3	$(x-1)(2 x-3)$	$-3 x-2 x=-5 x$	
1, 2	-3, -1	$(x-3)(2 x-1)$	$-x-6 x=-7 x$	

EXAMPLE 2 Factor when \boldsymbol{b} is positive and \boldsymbol{c} is negative

Factor $3 n^{2}+14 n-5$.

Solution

Because b is positive and c is negative, the factors of c have different signs.

Factor the trinomial.

1. $3 t^{2}+8 t+4$
2. $4 s^{2}-9 s+5$
3. $2 h^{2}+13 h-7$

FACTORING WHEN a IS NEGATIVE To factor a trinomial of the form $a x^{2}+b x+c$ when a is negative, first factor -1 from each term of the trinomial. Then factor the resulting trinomial as in the previous examples.

EXAMPLE 3 Factor when a is negative

Factor $-4 x^{2}+12 x+7$.

Solution

STEP 1 Factor -1 from each term of the trinomial.

$$
-4 x^{2}+12 x+7=-\left(4 x^{2}-12 x-7\right)
$$

STEP 2 Factor the trinomial $4 x^{2}-12 x-7$. Because b and c are both negative, the factors of c must have different signs. As in the previous examples, use a table to organize information about the factors of a and c.

Factors of 4	Factors of -7	Possible factorization	Middle term when multiplied	x
1,4	1, -7	$(x+1)(4 x-7)$	$-7 x+4 x=-3 x$	
1, 4	7, -1	$(x+7)(4 x-1)$	$-x+28 x=27 x$	x
1, 4	-1, 7	$(x-1)(4 x+7)$	$7 x-4 x=3 x$	x
1, 4	-7, 1	$(x-7)(4 x+1)$	$x-28 x=-27 x$	x
2,2	1, -7	$(2 x+1)(2 x-7)$	$-14 x+2 x=-12 x$	
2,2	-1, 7	$(2 x-1)(2 x+7)$	$14 x-2 x=12 x$	x

AVOID ERRORS

Remember to include the -1 that you factored out in Step 1.
$-4 x^{2}+12 x+7=-(2 x+1)(2 x-7)$
CHECK You can check your factorization using a graphing calculator. Graph $y_{1}=-4 x^{2}+12 x+7$ and $y_{2}=-(2 x+1)(2 x-7)$. Because the graphs coincide, you know that your factorization is correct.

Guided Practice for Example 3
Factor the trinomial.
4. $-2 y^{2}-5 y-3$
5. $-5 m^{2}+6 m-1$
6. $-3 x^{2}-x+2$

FINDING A COMMON FACTOR You have learned to factor out the greatest common monomial factor from the terms of a polynomial. Sometimes you may need to do this before finding two binomial factors of a trinomial.

EXAMPLE 4 Write and solve a polynomial equation

USE VERTICAL

 MOTION MODELYou may want to review using the vertical motion model.

DISCUS An athlete throws a discus from an initial height of 6 feet and with an initial vertical velocity of 46 feet per second.
a. Write an equation that gives the height (in feet) of the discus as a function of the time (in seconds) since it left the athlete's hand.
b. After how many seconds does the discus hit the ground?

Solution

a. Use the vertical motion model to write an equation for the height h (in feet) of the discus. In this case, $v=46$ and $s=6$.

$$
\begin{array}{ll}
h=-16 t^{2}+v t+s & \\
h=-16 t^{2}+46 t+6 & \\
\text { Subtical motion model } \\
h \text { Substute } 46 \text { for } v \text { and } 6 \text { for } s .
\end{array}
$$

b. To find the number of seconds that pass before the discus lands, find the value of t for which the height of the discus is 0 . Substitute 0 for h and solve the equation for t.

$$
\begin{array}{ll}
\begin{array}{l}
0=-16 t^{2}+46 t+6
\end{array} & \text { Substitute } 0 \text { for } h . \\
0=-2\left(8 t^{2}-23 t-3\right) & \text { Factor out }-2 . \\
0=-2(8 t+1)(t-3) & \begin{array}{l}
\text { Factor the trinomial. Find factors of } 8 \text { and }-3 \text { that } \\
\text { produce a middle term with a coefficient of }-23 . \\
8 t+1=0 \quad \text { or } t-3=0
\end{array} \\
\text { Zero-product property } \\
t=-\frac{1}{8} \text { or } \quad t=3 & \text { Solve for } t .
\end{array}
$$

The solutions of the equation are $-\frac{1}{8}$ and 3 . A negative solution does not make sense in this situation, so disregard $-\frac{1}{8}$.

- The discus hits the ground after 3 seconds.

- Guided Practice for Example 4

7. WHAT IF? In Example 4, suppose another athlete throws the discus with an initial vertical velocity of 38 feet per second and releases it from a height of 5 feet. After how many seconds does the discus hit the ground?
8. SHOT PUT In a shot put event, an athlete throws the shot put from an initial height of 6 feet and with an initial vertical velocity of 29 feet per second. After how many seconds does the shot put hit the ground?

EXAMPLE 5 Standardized Test Practice

A rectangle's length is 13 meters more than 3 times its width. The area is 10 square meters. What is the width?
(A) $\frac{2}{3} \mathrm{~m}$
(B) 3 m
(C) 5 m
(D) 10 m

$$
\begin{array}{rlrl}
w(3 w+13) & =10 & & \text { Write an equation to model area. } \\
3 w^{2}+13 w-10 & =0 & & \text { Simplify and subtract 10 from each side. } \\
(w+5)(3 w-2) & =0 & & \text { Factor left side. } \\
w+5=0 & \text { or } 3 w-2 & =0 & \\
\text { Zero-product property } \\
w=-5 & \text { or } & w & =\frac{2}{3}
\end{array} \text { Solve for } w . ~ \$ ~ \$ ~ l
$$

Reject the negative width.

- The correct answer is A.
(A) (B) (D)

Guided Practice for Example 5

9. A rectangle's length is 1 inch more than twice its width. The area is 6 square inches. What is the width?
(A) $\frac{1}{2} \mathrm{in}$.
(B) $\frac{3}{2} \mathrm{in}$.
(C) 2 in .
(D) $\frac{5}{2} \mathrm{in}$.
8.6 EXERCISES

HOMEWORK:
\bigcirc = See WORKED-OUT SOLUTIONS
KEY Exs. 5, 25, and 61
$\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 3, 22, 41, 51, and 60

- = MULTIPLE REPRESENTATIONS Ex. 62

SKILL PRACTICE

1. VOCABULARY What is another word for the solutions of $x^{2}+2 x+1=0$?
2. \star WRITING Explain how you can use a graph to check a factorization.
3. \star WRITING Compare factoring $6 x^{2}-x-2$ with factoring $x^{2}-x-2$.

EXAMPLES

1,2 , and 3
for Exs. $4-22$

FACTORING TRINOMIALS Factor the trinomial.
4. $-x^{2}+x+20$
5. $-y^{2}+2 y+8$
6. $-a^{2}+12 a-27$
7. $5 w^{2}-6 w+1$
8. $-3 p^{2}-10 p-3$
9. $6 s^{2}-s-5$
10. $2 t^{2}+5 t-63$
11. $2 c^{2}-7 c+3$
12. $3 n^{2}-17 n+10$
13. $-2 h^{2}+5 h+3$
14. $-6 k^{2}-13 k-6$
15. $10 x^{2}-3 x-27$
16. $4 m^{2}+9 m+5$
17. $3 z^{2}+z-14$
18. $4 a^{2}+9 a-9$
19. $4 n^{2}+16 n+15$
20. $-5 b^{2}+7 b-2$
21. $6 y^{2}-5 y-4$

EXAMPLES
4 and 5
for Exs. $23-39$
22. \star MULTIPLE CHOICE What is the correct factorization of $8 x^{2}-10 x+3$?
(A) $(2 x-3)(4 x-1)$
(B) $(2 x-1)(4 x-3)$
(C) $(4 x+1)(2 x-3)$
(D) $(8 x-3)(x-1)$

SOLVING EQUATIONS Solve the equation.
23. $2 x^{2}-3 x-35=0$
24. $3 w^{2}+22 w+7=0$
25. $4 s^{2}+11 s-3=0$
26. $7 a^{2}+2 a=5$
27. $8 t^{2}-2 t=3$
28. $6 m^{2}-5 m=14$
29. $b(20 b-3)-2=0$
30. $4\left(3 y^{2}-7 y+4\right)=1$
31. $p(3 p+14)=5$
32. $4 n^{2}-2 n-90=0$
33. $10 c^{2}-14 c+4=0$
34. $-16 k^{2}+8 k+24=0$
35. $6 r^{2}-15 r=99$
36. $56 z^{2}+2=22 z$
37. $30 x^{2}+25 x=20$

ERROR ANALYSIS Describe and correct the error in solving the equation.
38.

$$
\begin{aligned}
& 5 x^{2}+x=4 \\
& x(5 x+1)=4 \\
& x=4 \text { or } 5 x+1=4 \\
& x=4 \text { or } \quad x=\frac{3}{5}
\end{aligned}
$$

39.

$$
\begin{aligned}
12 x^{2}+5 x-2 & =0 \\
(3 x-1)(4 x+2) & =0 \\
3 x-1=0 \text { or } 4 x+2 & =0 \\
x=\frac{1}{3} \text { or } \quad x & =-\frac{1}{2}
\end{aligned}
$$

40. (2) GEOMETRY The length of a rectangle is 7 inches more than 5 times its width. The area of the rectangle is 6 square inches. What is the width?
41. \star SHORT RESPONSE The length of a rectangle is 1 inch more than 4 times its width. The area of the rectangle is 3 square inches. What is the perimeter of the rectangle? Explain how you found your answer.

FINDING ZEROS OF FUNCTIONS Find the zeros of the polynomial function.
42. $g(x)=2 x^{2}+x-1$
43. $f(x)=-x^{2}+12 x-35$
44. $h(x)=-3 x^{2}+2 x+5$
45. $f(x)=3 x^{2}+x-14$
46. $g(x)=8 x^{2}-6 x-14$
47. $f(x)=12 x^{2}-24 x-63$

SOLVING EQUATIONS Multiply each side of the equation by an appropriate power of $\mathbf{1 0}$ to obtain integer coefficients. Then solve the equation.
48. $0.3 x^{2}-0.7 x-4.0=0$
49. $0.8 x^{2}-1.8 x-0.5=0$
50. $0.4 x^{2}-0.4 x=9.9$
51. \star MULTIPLE CHOICE What are the solutions of the equation $0.4 x^{2}-1.1 x=2$?
(A) - 12.5 and 40
(B) -4 and 1.25
(C) -1.25 and 4
(D) -0.125 and 0.4

WRITING EQUATIONS Write a polynomial equation that has the given solutions. The equation must have integer coefficients. Explain your reasoning.
52. -3 and 2
53. $-\frac{1}{2}$ and 5
54. $-\frac{3}{4}$ and $-\frac{1}{3}$

CHALLENGE Factor the trinomial.
55. $2 x^{2}-11 x y+5 y^{2}$
56. $3 x^{2}+2 x y-8 y^{2}$
57. $6 x^{3}-10 x^{2} y-56 x y^{2}$

PROBLEM SOLVING

EXAMPLE 4
for Exs. 58, 60

EXAMPLE 5 for Exs. 59, 61
58. DIVING A diver dives from a cliff when her center of gravity is 46 feet above the surface of the water. Her initial vertical velocity leaving the cliff is 9 feet per second. After how many seconds does her center of gravity enter the water?
59. SCRAPBOOK DESIGN You plan to make a scrapbook. On the cover, you want to show three pictures with space between them, as shown. Each of the pictures is twice as long as it is wide.
a. Write a polynomial that represents the area of the scrapbook cover.
b. The area of the cover will be 96 square centimeters. Find the length and width of the
 pictures you will use.
60. \star SHORT RESPONSE You throw a ball into the air with an initial vertical velocity of 31 feet per second. The ball leaves your hand when it is 6 feet above the ground. You catch the ball when it reaches a height of 4 feet. After how many seconds do you catch the ball? Explain how you can use the solutions of an equation to find your answer.
61. PARTHENON The Parthenon in Athens, Greece, is an ancient structure that has a rectangular base. The length of the Parthenon's base is 8 meters more than twice its width. The area of the base is about 2170 square meters. Find the length and width of the Parthenon's base.
62. MULTIPLE REPRESENTATIONS An African cat called a serval leaps from the ground in an attempt to catch a bird. The serval's initial vertical velocity is 24 feet per second.
a. Writing an Equation Write an equation that gives the serval's height (in feet) as a function of the time (in seconds) since it left the ground.
b. Making a Table Use the equation from part (a) to make a table that shows the height of the serval for $t=0,0.3,0.6,0.9,1.2$, and 1.5 seconds.
c. Drawing a Graph Plot the ordered pairs in the table as points in a coordinate plane. Connect the points with a smooth curve. After how many seconds does the serval reach a height of 9 feet? Justify your answer using the equation from part (a).

[^0]
63. CHALLENGE A bush cricket jumps from the ground into the air with an initial vertical velocity of 4 feet per second.
a. Write an equation that gives the cricket's height (in feet) as a function of the time (in seconds) since it left the ground.
b. After how many seconds is the cricket 3 inches off the ground?
c. Does the cricket jump higher than 3 inches? Explain your reasoning using your answer from part (b).

QUIZ

Factor out the greatest common monomial factor.

1. $16 a^{2}-40 b$
2. $9 x y^{2}+6 x^{2} y$
3. $4 n^{4}-22 n^{3}-8 n^{2}$
4. $3 x^{2}+6 x y-3 y^{2}$
5. $12 a b c^{2}-6 a^{2} c$
6. $-36 s^{3}+18 s^{2}-54 s$

Factor the trinomial.

7. $r^{2}+15 r+56$
8. $s^{2}-6 s+5$
9. $w^{2}+6 w-40$
10. $-a^{2}+9 a+22$
11. $2 x^{2}-9 x+4$
12. $5 m^{2}+m-6$
13. $6 h^{2}-19 h+3$
14. $-7 y^{2}-23 y-6$
15. $18 c^{2}+12 c-6$

Solve the equation.

16. $(4 p-7)(p+5)=0$
17. $-8 u^{2}+28 u=0$
18. $51 x^{2}=-17 x$
19. $b^{2}-11 b=-24$
20. $m^{2}+12 m=-35$
21. $q^{2}+19=-20 q$
22. $3 t^{2}-11 t+10=0$
23. $4 y^{2}+31 y=8$
24. $14 s^{2}+12 s=2$
25. BASEBALL A baseball player hits a baseball into the air with an initial vertical velocity of 72 feet per second. The player hits the ball from a height of 3 feet.
a. Write an equation that gives the baseball's height as a function of the time (in seconds) after it is hit.
b. After how many seconds is the baseball 84 feet above the ground?

[^0]: AhimatedAlgebra at my.hrw.com

