8.7 Factor Special Products

Before
Now
You factored polynomials of the form $a x^{2}+b x+c$.

Why? You will factor special products.
So you can use a scientific model, as in Ex. 48.

Key Vocabulary - perfect square trinomial

You can use the special product patterns you have learned to factor polynomials, such as the difference of two squares.

KEY CONCEPT

For Your Notebook

Difference of Two Squares Pattern

Algebra

$a^{2}-b^{2}=(a+b)(a-b)$

Example

$4 x^{2}-9=(2 x)^{2}-3^{2}=(2 x+3)(2 x-3)$

EXAMPLE 1 Factor the difference of two squares

Factor the polynomial.

a. $y^{2}-16=y^{2}-4^{2} \quad$ Write as $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$.

$$
=(y+4)(y-4) \quad \text { Difference of two squares pattern }
$$

b. $25 m^{2}-36=(5 m)^{2}-6^{2}$

Write as $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$.

$$
=(5 m+6)(5 m-6)
$$

Difference of two squares pattern
c. $x^{2}-49 y^{2}=x^{2}-(7 y)^{2}$
$=(x+7 y)(x-7 y)$ Write as $a^{2}-b^{2}$.

Difference of two squares pattern

EXAMPLE 2 Factor the difference of two squares

Factor the polynomial $8-18 \boldsymbol{n}^{2}$.

$$
\begin{aligned}
8-18 n^{2} & =2\left(4-9 n^{2}\right) & & \text { Factor out common factor. } \\
& =2\left[2^{2}-(3 n)^{2}\right] & & \text { Write } 4-9 n^{2} \text { as } a^{2}-\boldsymbol{b}^{2} . \\
& =2(2+3 n)(2-3 n) & & \text { Difference of two squares pattern }
\end{aligned}
$$

Guided Practice for Examples 1 and 2

1. Factor the polynomial $4 y^{2}-64$.

PERFECT SQUARE TRINOMIALS The pattern for finding the square of a binomial gives you the pattern for factoring trinomials of the form $a^{2}+2 a b+b^{2}$ and $a^{2}-2 a b+b^{2}$. These are called perfect square trinomials.

KEY CONCEPT

For Your Notebook

Perfect Square Trinomial Pattern

Algebra
$a^{2}+2 a b+b^{2}=(a+b)^{2}$

Example

$x^{2}+6 x+9=x^{2}+2(x \cdot 3)+3^{2}=(x+3)^{2}$
$a^{2}-2 a b+b^{2}=(a-b)^{2}$
$x^{2}-10 x+25=x^{2}-2(x \cdot 5)+5^{2}=(x-5)^{2}$

EXAMPLE 3 Factor perfect square trinomials

Factor the polynomial.
a. $n^{2}-12 n+36=n^{2}-2(n \cdot 6)+6^{2} \quad$ Write as $\boldsymbol{a}^{2}-2 a b+b^{2}$.

$$
=(n-6)^{2}
$$

Perfect square trinomial pattern
b. $9 x^{2}-12 x+4=(3 x)^{2}-2(3 x \cdot 2)+2^{2}$

Write as $a^{2}-2 a b+b^{2}$.

$$
=(3 x-2)^{2}
$$

c. $4 s^{2}+4 s t+t^{2}=(2 s)^{2}+2(2 s \cdot t)+t^{2}$

$$
=(2 s+t)^{2}
$$

Perfect square trinomial pattern
Write as $a^{2}+2 a b+b^{2}$.
Perfect square trinomial pattern

AinimatedAlgebra at my.hrw.com

EXAMPLE 4 Factor a perfect square trinomial

Factor the polynomial $-3 y^{2}+36 y-108$.

$$
\begin{array}{rlrl}
-3 y^{2}+36 y-108 & =-3\left(y^{2}-12 y+36\right) & & \text { Factor out }-3 \\
& =-3\left[y^{2}-2(y \cdot 6)+6^{2}\right] & & \text { Write } y^{2}-12 y+36 \text { as } \\
a^{2}-2 a b+b^{2}
\end{array}
$$

CHECK Check your factorization using a graphing calculator. Graph $y_{1}=-3 x^{2}+36 x-108$ and $y_{2}=-3(x-6)^{2}$. Because the graphs coincide, you know that your factorization is correct.

\section*{| | GuIDED PRACTICE | for |
| :--- | :--- | :--- |
| | Factor the polynomial. | |}

2. $h^{2}+4 h+4$
3. $2 y^{2}-20 y+50$
4. $3 x^{2}+6 x y+3 y^{2}$

EXAMPLE 5 Solve a polynomial equation

Solve the equation $x^{2}+\frac{2}{3} x+\frac{1}{9}=0$.

FIND SOLUTIONS This equation has two identical solutions, because it has two identical factors.

$$
\begin{aligned}
x^{2}+\frac{2}{3} x+\frac{1}{9} & =0 & & \text { Write original equation. } \\
9 x^{2}+6 x+1 & =0 & & \text { Multiply each side by } 9 . \\
(3 x)^{2}+2(3 x \cdot 1)+(1)^{2} & =0 & & \text { Write left side as } a^{2}+2 a b+b^{2} . \\
\cdots \ldots \ldots \ldots \ldots \cdot(3 x+1)^{2} & =0 & & \text { Perfect square trinomial pattern } \\
3 x+1 & =0 & & \text { Zero-product property } \\
x & =-\frac{1}{3} & & \text { Solve for } x .
\end{aligned}
$$

- The solution of the equation is $-\frac{1}{3}$.

EXAMPLE 6 Solve a vertical motion problem

FALLING OBJECT A window washer drops a wet sponge from a height of 64 feet. After how many seconds does the sponge land on the ground?

Solution

Use the vertical motion model to write an equation for the height h (in feet) of the sponge as a function of the time t (in seconds) after it is dropped.

The sponge was dropped, so it has no initial vertical velocity. Find the value of t for which the
 height is 0 .

| h | $=-16 t^{2}+v t+s$ | | Vertical motion model |
| ---: | :--- | ---: | :--- | ---: | :--- |
| 0 | $=-16 t^{2}+(0) t+64$ | | Substitute $\mathbf{0}$ for $\boldsymbol{h}, \mathbf{0}$ for \mathbf{v}, and $\mathbf{6 4}$ for s. |
| 0 | $=-16\left(t^{2}-4\right)$ | | Factor out $-\mathbf{1 6 .}$ |
| 0 | $=-16(t-2)(t+2)$ | | Difference of two squares pattern |
| $t-2$ | $=0 \quad$ or $t+2=0$ | | Zero-product property |
| t | $=2$ or $\quad t=-2$ | | Solve for t. |

Disregard the negative solution of the equation.

- The sponge lands on the ground 2 seconds after it is dropped.

Guided Practice for Examples 5 and 6

Solve the equation.

5. $a^{2}+6 a+9=0$
6. $w^{2}-14 w+49=0$
7. $n^{2}-81=0$
8. WHAT IF? In Example 6, suppose the sponge is dropped from a height of 16 feet. After how many seconds does it land on the ground?

Skill Practice

1. VOCABULARY Copy and complete: The polynomial $9 n^{2}+6 n+1$ is called a(n) \qquad trinomial.
2. \star WRITING Explain how to factor the difference of two squares.

EXAMPLES

1 and 2
for Exs. 3-8

EXAMPLES

3 and 4
for Exs. 9-14

EXAMPLES

$1,2,3$, and 4 for Exs. 15-24

dIfFERENCE OF TWO SQUARES Factor the polynomial.

3. $x^{2}-25$
4. $n^{2}-64$
5. $81 c^{2}-4$
6. $49-121 p^{2}$
7. $-3 m^{2}+48 n^{2}$
8. $225 x^{2}-144 y^{2}$

PERFECT SQUARE TRINOMIALS Factor the polynomial.

9. $x^{2}-4 x+4$
10. $y^{2}-10 y+25$
11. $49 a^{2}+14 a+1$
12. $9 t^{2}-12 t+4$
13. $m^{2}+m+\frac{1}{4}$
14. $2 x^{2}+12 x y+18 y^{2}$

FACTORING POLYNOMIALS Factor the polynomial.
15. $4 c^{2}-400$
16. $4 f^{2}-36 f+81$
17. $-9 r^{2}+4 s^{2}$
18. $z^{2}+12 z+36$
19. $72-32 y^{2}$
20. $45 r^{2}-120 r s+80 s^{2}$

ERROR ANALYSIS Describe and correct the error in factoring.
21.

$$
\begin{aligned}
36 x^{2}-81 & =9\left(4 x^{2}-9\right) \\
& =9\left((2 x)^{2}-3^{2}\right) \\
& =9(2 x-3)^{2}
\end{aligned}
$$

22.

$$
\begin{aligned}
y^{2}-6 y+9 & =y^{2}-2(y \cdot 3)+3^{2} \\
& =(y-3)(y+3)
\end{aligned}
$$

23. \star MULTIPLE CHOICE Which is the correct factorization of $-45 x^{2}+20 y^{2}$?
(A) $-5(3 x+2 y)^{2}$
(B) $5(3 x-2 y)^{2}$
(C) $-5(3 x+2 y)(3 x-2 y)$
(D) $5(3 x+2 y)(3 x-2 y)$
24. \star MULTIPLE CHOICE Which is the correct factorization of $16 m^{2}-8 m n+n^{2}$?
(A) $(4 m-n)^{2}$
(B) $(4 m+n)^{2}$
(C) $(8 m-n)^{2}$
(D) $(4 m-n)(4 m+n)$

EXAMPLE 5
for Exs. 25-39

SOLVING EQUATIONS Solve the equation.
25. $x^{2}+8 x+16=0$
26. $16 a^{2}-8 a+1=0$
27. $4 w^{2}-36=0$
28. $32-18 m^{2}=0$
29. $27 c^{2}+108 c+108=0$
30. $-2 h^{2}-28 h-98=0$
31. $6 p^{2}=864$
32. $-3 t^{2}=-108$
33. $8 k^{2}=98$
34. $-\frac{4}{3} x+\frac{4}{9}=-x^{2}$
35. $y^{2}-\frac{5}{3} y=-\frac{25}{36}$
36. $\frac{2}{9}=8 n^{2}$
37. $-9 c^{2}=-16$
38. $-20 s-3=25 s^{2}+1$
39. $y^{4}-2 y^{3}+y^{2}=0$

CHALLENGE Determine the value(s) of \boldsymbol{k} for which the expression is a perfect square trinomial.
40. $x^{2}+k x+36$
41. $4 x^{2}+k x+9$
42. $16 x^{2}+k x+4$
43. $25 x^{2}+10 x+k$
44. $49 x^{2}-84 x+k$
45. $4 x^{2}-48 x+k$

Problem Solving

EXAMPLE 6
for Exs. 46-48
46. FALLING BRUSH While standing on a ladder, you drop a paintbrush from a height of 25 feet. After how many seconds does the paintbrush land on the ground?
47. FALLING OBJECT A hickory nut falls from a branch that is 100 feet above the ground. After how many seconds does the hickory nut land on the ground?
48. GRASSHOPPER A grasshopper jumps straight up from the ground with an initial vertical velocity of 8 feet per second.
a. Write an equation that gives the height (in feet) of the grasshopper as a function of the time (in seconds) since it leaves the ground.
b. After how many seconds is the grasshopper 1 foot off the ground?
49.) \star SHORT RESPONSE A ball is thrown up into the air from a height of 5 feet with an initial vertical velocity of 56 feet per second. How many times does the ball reach a height of 54 feet? Explain your answer.
50. \star EXTENDED RESPONSE An arch of balloons decorates the stage at a high school graduation. The balloons are tied to a frame. The shape of the frame can be modeled by the graph of the equation $y=-\frac{1}{4} x^{2}+3 x$ where x and y are measured in feet.

a. Make a table of values that shows the height of the balloon arch for $x=0,2,5,8$, and 11 feet.
b. For what additional values of x does the equation make sense? Explain.
c. At approximately what distance from the left end does the arch reach a height of 9 feet? Check your answer algebraically.
51. FRAMING A square mirror is framed with stained glass as shown. Each corner of the frame began as a square with a side length of d inches before it was cut to fit the mirror. The mirror has a side length of 3 inches. The area of the stained glass frame is 91 square inches.
a. Write a polynomial that represents the area of the stained glass frame.
b. What is the side length of the frame?

52. CHALLENGE You have 120 folding chairs to set up in a park for an outdoor play. You want each row to have an odd number of chairs. You also want each row after the first to have 2 more chairs than the row in front of it. The first row will have 15 chairs.
a. Copy and complete the table below.

\boldsymbol{n}	nth odd integer	Sum of first \boldsymbol{n} odd integers	Sum as a power
1	1	1	1^{2}
2	3	$1+3=4$	2^{2}
3	5	$1+3+5=9$	$?$
4	7	$?$	$?$
5	9	$?$	$?$

b. Describe the relationship between n and the sum of the first n odd integers. Then find the sum of the first 10 odd integers.
c. Explain how to find the sum of the odd integers from 11 to 21 .
d. How many rows of chairs will you need for the outdoor play? Explain your thinking.

