\qquad

GOAL Factor polynomials completely.

Vocabulary

Factoring a common monomial from pairs of terms, then looking for a common binomial factor is called factor by grouping.

A polynomial of two or more terms is prime if it cannot be written as the product of polynomials of lesser degree using only integer coefficients and constants, and if the only common factors of its terms are 1 and -1 .

A polynomial is factored completely if it is written as a monomial or as the product of a monomial (possibly 1 or -1) and one or more prime polynomials.

EXAMPLE 1 Factor out a common binomial

Factor the expression.

a. $5 x^{2}(x-2)-3(x-2)$
b. $7 y(5-y)+3(y-5)$

Solution

a. $5 x^{2}(x-2)-3(x-2)=(x-2)\left(5 x^{2}-3\right)$
b. The binomials $5-y$ and $y-5$ are opposites. Factor -1 from
$5-y$ to obtain a common binomial factor.

$$
\begin{array}{rlrl}
7 y(5-y)+3(y-5) & =-7 y(y-5)+3(y-5) & & \text { Factor }-1 \text { from } \\
& =(y-5)(-7 y+3) & & (5-y) . \\
\text { Distributive property }
\end{array}
$$

EXAMPLE2 Factor by grouping

Factor the polynomial.

a. $m^{3}+7 m^{2}-2 m-14$
b. $n^{3}+30+6 n^{2}+5 n$

Solution

a. $m^{3}+7 m^{2}-2 m-14=\left(m^{3}+7 m^{2}\right)+(-2 m-14) \quad$ Group terms.

$$
=m^{2}(m+7)-2(m+7) \quad \text { Factor each group } .
$$

$$
=(m+7)\left(m^{2}-2\right) \quad \text { Distributive property }
$$

b. $n^{3}+30+6 n^{2}+5 n=n^{3}+6 n^{2}+5 n+30 \quad$ Rearrange terms.
$=\left(n^{3}+6 n^{2}\right)+(5 n+30) \quad$ Group terms.
$=n^{2}(n+6)+5(n+6) \quad$ Factor each group.
$=(n+6)\left(n^{2}+5\right) \quad$ Distributive property
\qquad

Exercises for Examples 1 and 2

Factor the expression.

1. $11 x(x-8)+3(x-8)$
2. $9 x^{3}+9 x^{2}-7 x-7$
3. $10 x^{3}+21 y-35 x^{2}-6 x y$

EXAMPLE4 Solve a polynomial equation

Solve the equation $7 x^{3}+14 x^{2}=105 x$.

Solution

$$
\begin{array}{rlrlrl}
7 x^{3}+14 x^{2} & =105 x & & \text { Write original equation. } \\
7 x^{3}+14 x^{2}-105 x & =0 & & & \text { Subtract } 105 x \text { from each } \\
7 x\left(x^{2}+2 x-15\right) & =0 & & & \text { Factor out } 7 x . \\
7 x(x+5)(x-3) & =0 & & \text { Factor the trinomial. } \\
7 x=0 & \text { or } & x+5 & =0 & \text { or } & x-3=0 \\
x=0 & \text { or } & & \text { Zero-product property } \\
x & =-5 & \text { or } & x=3 & & \text { Solve for } x .
\end{array}
$$

The roots of the equation are $0,-5$, and 3 .

Exercises for Example 3

Solve the equation.

4. $2 c^{3}+8 c^{2}-42 c=0$
5. $4 x^{3}+48 x^{2}+144 x=0$
6. $5 r^{3}+15 r=20 r^{2}$
