LESSON 8.8

Date

Study Guide

For use with the lesson "Factor Polynomials Completely"

GOAL Factor polynomials completely.

Vocabulary

Factoring a common monomial from pairs of terms, then looking for a common binomial factor is called factor by grouping.

A polynomial of two or more terms is **prime** if it cannot be written as the product of polynomials of lesser degree using only integer coefficients and constants, and if the only common factors of its terms are 1 and -1.

A polynomial is factored completely if it is written as a monomial or as the product of a monomial (possibly 1 or -1) and one or more prime polynomials.

Factor out a common binomial EXAMPLE 1

Factor the expression.

a. $5x^2(x-2) - 3(x-2)$

b. 7y(5-y) + 3(y-5)

Solution

- **a.** $5x^2(x-2) 3(x-2) = (x-2)(5x^2-3)$
- **b.** The binomials 5 y and y 5 are opposites. Factor -1 from 5 - v to obtain a common binomial factor. 7v(5 - v) + 3(v - 5) = -7v(v - 5) + 3(v - 5)Factor -1 from (5 - y). = (y - 5)(-7y + 3)

Distributive property

Factor by grouping EXAMPLE 2

Factor the polynomial.

.
$$m^3 + 7m^2 - 2m - 14$$
 b.

$$n^3 + 30 + 6n^2 + 5n$$

Solution

a

a.	$m^3 + 7m^2 - 2m - 14 = (m^3 + 7m^2) + (-2m - 14)$	Group terms.
	$= m^2(m+7) - 2(m+7)$	Factor each group.
	$= (m+7)(m^2-2)$	Distributive property
b.	$n^3 + 30 + 6n^2 + 5n = n^3 + 6n^2 + 5n + 30$	Rearrange terms.
	$= (n^3 + 6n^2) + (5n + 30)$	Group terms.
	$= n^2(n+6) + 5(n+6)$	Factor each group.
	$= (n+6)(n^2+5)$	Distributive property

8-88

Algebra 1

Chapter Resource Book

ESSON 8.8

Study Guide continued For use with the lesson "Factor Polynomials Completely"

Exercises for Examples 1 and 2

Factor the expression.

- 1. 11x(x-8) + 3(x-8)
- **2.** $9x^3 + 9x^2 7x 7$
- **3.** $10x^3 + 21y 35x^2 6xy$

EXAMPLE 4 Solve a polynomial equation

Solve the equation $7x^3 + 14x^2 = 105x$.

Solution

$7x^3 + 14x^2 = 105x$	Write original equation.
$7x^3 + 14x^2 - 105x = 0$	Subtract $105x$ from each side.
$7x(x^2 + 2x - 15) = 0$	Factor out $7x$.
7x(x+5)(x-3) = 0	Factor the trinomial.
7x = 0 or $x + 5 = 0$ or $x - 3 = 0$	2 Zero-product property
$x = 0 or \qquad x = -5 or \qquad x = 3$	3 Solve for <i>x</i> .

The roots of the equation are 0, -5, and 3.

Exercises for Example 3

Solve the equation.

- **4.** $2c^3 + 8c^2 42c = 0$
- **5.** $4x^3 + 48x^2 + 144x = 0$
- 6. $5r^3 + 15r = 20r^2$

Date _

Name_

LESSON 8.8