8.8 Factor Polynomials Completely

Before	You factored polynomials.	T
Now	You will factor polynomials completely.	-
Why?	So you can model the height of a projectile, as in Ex. 71.	

Key Vocabulary

factor by grouping

factor completely

CC.9-12.A.SSE.3a Factor a quadratic expression to reveal the zeros of the function it defines.

CHECK WORK

You have used the distributive property to factor a greatest common monomial from a polynomial. Sometimes, you can factor out a common binomial.

EXAMPLE 1 **Factor out a common binomial**

Factor the expression.

a. 2x(x+4) - 3(x+4)

Solution

a. 2x(x + 4) - 3(x + 4) = (x + 4)(2x - 3)

b. The binomials y - 2 and 2 - y are opposites. Factor -1 from 2 - y to obtain a common binomial factor.

$$3y^{2}(y-2) + 5(2-y) = 3y^{2}(y-2) - 5(y-2)$$
 Factor -1 from (2 - y).
= (y - 2)(3y^{2} - 5) Distributive property

GROUPING You may be able to use the distributive property to factor polynomials with four terms. Factor a common monomial from pairs of terms, then look for a common binomial factor. This is called **factor by grouping**.

EXAMPLE 2 Factor by grouping

Factor the polynomial.

a. $x^3 + 3x^2 + 5x + 15$

b. $v^2 + v + vx + x$

b. $3y^2(y-2) + 5(2-y)$

Solution

a. $x^3 + 3x^2 + 5x + 15 = (x^3 + 3x^2) + (5x + 15)$ Group terms. Remember that you can $= x^{2}(x + 3) + 5(x + 3)$ Factor each group. check a factorization by $= (x + 3)(x^{2} + 5)$: multiplying the factors. **Distributive property b.** $y^2 + y + yx + x = (y^2 + y) + (yx + x)$ Group terms. = y(y + 1) + x(y + 1)Factor each group. = (v + 1)(v + x)**Distributive property**

Factor $x^3 - 6 + 2x - 3x^2$.

Solution

The terms x^3 and -6 have no common factor. Use the commutative property to rearrange the terms so that you can group terms with a common factor.

 $x^{3} - 6 + 2x - 3x^{2} = x^{3} - 3x^{2} + 2x - 6$ $=(x^3-3x^2)+(2x-6)$ $= x^{2}(x-3) + 2(x-3)$ $= (x - 3)(x^2 + 2)$ CHECK Check your factorization using

a graphing calculator. Graph $y_1 = x^3 - 6 + 2x - 3x^2$ and $y_2 = (x - 3)(x^2 + 2)$. Because the graphs coincide, you know that your factorization is correct.

Rearrange terms. Group terms. Factor each group.

Distributive property

-	GUIDED PRACTICE	for Examples 1, 2, and 3	
	Factor the express	ion.	
	1. $x(x-2) + (x-1)$	2) 2. $a^3 + 3a^2 + a + 3$	3. $y^2 + 2x + yx + 2y$

READING

If a polynomial has two or more terms and is unfactorable, it is called a prime polynomial.

FACTORING COMPLETELY You have seen that the polynomial $x^2 - 1$ can be factored as (x + 1)(x - 1). This polynomial is factorable. Notice that the polynomial $x^2 + 1$ cannot be written as the product of polynomials with integer coefficients. This polynomial is unfactorable. A factorable polynomial with integer coefficients is **factored completely** if it is written as a product of unfactorable polynomials with integer coefficients.

CONCEPT SUMMARY	For Your Notebook
Guidelines for Factoring Polynomials Completely	
To factor a polynomial completely, you should try each of these	steps.
1. Factor out the greatest common monomial factor.	$3x^2 + 6x = 3x(x + 2)$
2. Look for a difference of two squares or a perfect square trinomial.	$x^2 + 4x + 4 = (x + 2)^2$
3. Factor a trinomial of the form $ax^2 + bx + c$ into a product of binomial factors.	$3x^2 - 5x - 2 = (3x + 1)(x - 2)$
4. Factor a polynomial with four terms by grouping.	$x^{3} + x - 4x^{2} - 4 = (x^{2} + 1)(x - 4)$

EXAMPLE 4 Factor completely

Factor the polynomial completely.

b. $4x^3 - 44x^2 + 96x$ **c.** $50h^4 - 2h^2$ **a.** $n^2 + 2n - 1$

Solution

a. The terms of the polynomial have no common monomial factor. Also, there are no factors of -1 that have a sum of 2. This polynomial cannot be factored.

b.
$$4x^3 - 44x^2 + 96x = 4x(x^2 - 11x + 24)$$

 $= 4x(x - 3)(x - 8)$
c. $50h^4 - 2h^2 = 2h^2(25h^2 - 1)$
 $= 2h^2(5h - 1)(5h + 1)$
Find two negative factors of 24 that have a sum of -11.
Factor out 2h^2.
Difference of two squares pattern

GUIDED PRACTICE for Example 4

Factor the polynomial completely.

5. $2y^3 - 12y^2 + 18y$ **6.** $m^3 - 2m^2 - 8m$ 4. $3x^3 - 12x$

EXAMPLE 5 Solve a polynomial equation

Solve $3x^3 + 18x^2 = -24x$. $3x^3 + 18x^2 = -24x$ Write original equation. $3x^3 + 18x^2 + 24x = 0$ Add 24*x* to each side. $3x(x^2 + 6x + 8) = 0$ Factor out 3x. 3x(x+2)(x+4) = 0Factor trinomial. 3x = 0 or x + 2 = 0 or x + 4 = 0 Zero-product property x = 0 x = -2 x = -4 Solve for x.

The solutions of the equation are 0, -2, and -4.

CHECK Check each solution by substituting it for *x* in the equation. One check is shown here. $2(0)^{3} + 10(0)^{2}^{2} = 0.000$

$$3(-2)^{\circ} + 18(-2)^{\circ} \doteq -24(-2)$$

 $-24 + 72 \stackrel{?}{=} 48$
 $48 = 48 \checkmark$

GUIDED PRACTICE for Example 5

Solve the equation.

7. $w^3 - 8w^2 + 16w = 0$ **8.** $x^3 - 25x = 0$ **9.** $c^3 - 7c^2 + 12c = 0$

EXAMPLE 6 Solve a multi-step problem

TERRARIUM A terrarium in the shape of a rectangular prism has a volume of 4608 cubic inches. Its length is more than 10 inches. The dimensions of the terrarium are shown. Find the length, width, and height of the terrarium.

Solution

STEP 1 Write a verbal model. Then write an equation.

GUIDED PRACTICE for Example 6

10. **DIMENSIONS OF A BOX** A box in the shape of a rectangular prism has a volume of 72 cubic feet. The box has a length of x feet, a width of (x - 1) feet, and a height of (x + 9) feet. Find the dimensions of the box.

Skill Practice

	1. VOCABULARY What does it mean for a polynomial to be factored completely?			
	2. ★ WRITING <i>Explain</i> how you know if a polynomial is unfactorable.			
EXAMPLE 1	BINOMIAL FACTORS Factor the expression.			
for Exs. 3–12	3. $x(x-8) + (x-8)$	4. $5y(y+3) - 2(y+3)$	5. $6z(z-4) - 7(z-4)$	
	6. $10(a-6) - 3a(a-6)$	7. $b^2(b+5) - 3(b+5)$	5) 8. $7c^2(c+9) + 2(c+9)$	
	9. $x(13 + x) - (x + 13)$	10. $y^2(y-4) + 5(4-y)$	$11. \ 12(z-1) - 5z^2(1-z)$	
	12. \star MULTIPLE CHOICE Which is the correct factorization of $x^2(x-8) + 5(8-x)$?			
	(A) $(x^2 + 5)(x - 8)$	$\textcircled{\textbf{B}}$ (x^2	(+5)(8-x)	
	(c) $(x^2 - 5)(x - 8)$	(D) (x^2)	(-5)(8-x)	
EXAMPLES FACTORING BY GROUPING Factor the polynomial.				
2 and 3 for Exs. 13–22	(13) $x^3 + x^2 + 2x + 2$	14. $y^3 - 9y^2 + y - 9$	15. $z^3 - 4z^2 + 3z - 12$	
: 101 EXS. 15-22			5 18. $2s^3 - 3s^2 + 18s - 27$	
	19. $5n^3 - 4n^2 + 25n - 20$	20. $x^2 + 8x - xy - 8y$	21. $y^2 + y + 5xy + 5x$	
	22. ERROR ANALYSIS <i>Describ</i> and correct the error in factoring.	e a ³ + 8a ² - 6a - 4	$bB = a^{2}(a + b) + 6(a + b)$ = $(a + b)(a^{2} + b)$	
EXAMPLE 4	FACTORING COMPLETELY Fac	tor the polynomial con	pletely.	
for Exs. 23-42	(23) $x^4 - x^2$	24. $36a^4 - 4a^2$	25. $3n^5 - 48n^3$	
	26. $4y^6 - 16y^4$	27. $75c^9 - 3c^7$	28. $72p - 2p^3$	
	29. $32s^4 - 8s^2$	30. $80z^8 - 45z^6$	31. $m^2 - 5m - 35$	
	32. $6g^3 - 24g^2 + 24g$	33. $3w^4 + 24w^3 + 48w$	² 34. $3r^5 + 3r^4 - 90r^3$	
	35. $b^3 - 5b^2 - 4b + 20$	36. $h^3 + 4h^2 - 25h - 1$	100 37. $9t^3 + 18t - t^2 - 2$	
	38. $2x^5y - 162x^3y$	39. $7a^3b^3 - 63ab^3$	40. $-4s^3t^3 + 24s^2t^2 - 36st$	
	41. ★ MULTIPLE CHOICE What (A) $3x^4(x^2 - 25)$ (B) (3)		ored form of $3x^6 - 75x^4$? $(x+5)^2$ D $3x^4(x-5)(x+5)$	
	42. ERROR ANALYSIS <i>Describ</i> correct the error in factor the polynomial completel	ing	$9x + 54 = x^{2}(x - 6) - 9(x - 6)$ = $(x - 6)(x^{2} - 9)$	

EXAMPLE 5 SOLVING EQUATIONS Solve the equation. for Exs. 43–54 2 2 2

43. $x^3 + x^2 - 4x - 4 = 0$ **44.** $a^3 - 11a^2 - 9a + 99 = 0$ **45.** $4y^3 - 7y^2 - 16y + 28 = 0$ **46.** $5n^3 - 30n^2 + 40n = 0$ **47.** $3b^3 + 24b^2 + 45b = 0$ **48.** $2t^5 + 2t^4 - 144t^3 = 0$ **49.** $z^3 - 81z = 0$ **50.** $c^4 - 100c^2 = 0$ **51.** $12s - 3s^3 = 0$ **52.** $2x^3 - 10x^2 + 40 = 8x$ **53.** $3p + 1 = p^2 + 3p^3$ **54.** $m^3 - 3m^2 = 4m - 12$

55. ★ WRITING Is it possible to find three solutions of the equation $x^3 + 2x^2 + 3x + 6 = 0$? *Explain* why or why not.

GEOMETRY Find the length, width, and height of the rectangular prism with the given volume.

56. Volume = 12 cubic inches

x in.

57. Volume: 2592 cubic feet

FACTORING COMPLETELY Factor the polynomial completely.

58. $x^3 + 2x^2y - x - 2y$ **59.** $8b^3 - 4b^2a - 18b + 9a$ **60.** $4s^2 - s + 12st - 3t$

FACTOR BY GROUPING In Exercises 61–66, use the example below to factor the trinomial by grouping.

EXAMPLE Factor a trinomial by grouping Factor $8x^2 + 10x - 3$ by grouping. Solution Notice that the polynomial is in the form $ax^2 + bx + c$. *step 1* Write the product *ac* as the product of two factors that have a sum of b. In this case, the product ac is 8(-3) = -24. Find two factors of -24 that have a sum of 10. $-24 = 12 \cdot (-2)$ and 12 + (-2) = 10**STEP 2** Rewrite the middle term as two terms with coefficients 12 and -2. $8x^{2} + 10x - 3 = 8x^{2} + 12x - 2x - 3$ **STEP 3** Factor by grouping. $8x^{2} + 12x - 2x - 3 = (8x^{2} + 12x) + (-2x - 3)$ Group terms. =4x(2x+3)-(2x+3)Factor each group. = (2x + 3)(4x - 1)Distributive property **61.** $6x^2 + 5x - 4$ **62.** $10s^2 + 19s + 6$ **63.** $12n^2 - 13n + 3$ **65.** $21w^2 + 8w - 4$ **64.** $16a^2 + 14a + 3$ **66.** $15y^2 - 31y + 10$ 67. CHALLENGE Use factoring by grouping to show that a trinomial of the

form $a^2 + 2ab + b^2$ can be factored as $(a + b)^2$. Justify your steps.

HINT In Ex. 57, convert the given volume to cubic yards. Use the conversion factor $\frac{1 \text{ yd}^3}{27 \text{ ft}^3}$.

PROBLEM SOLVING

- **68. CYLINDRICAL VASE** A vase in the shape of a cylinder has a height of 6 inches and a volume of 24π cubic inches. What is the radius of the vase?
- **69. CARPENTRY** You are building a birdhouse that will have a volume of 128 cubic inches. The birdhouse will have the dimensions shown.
 - **a.** Write a polynomial that represents the volume of the birdhouse.
 - **b.** What are the dimensions of the birdhouse?
- **70. BAG SIZE** A gift bag is shaped like a rectangular prism and has a volume of 1152 cubic inches. The dimensions of the gift bag are shown. The height is greater than the width. What are the dimensions of the gift bag?

- 71. **★ SHORT RESPONSE** A pallino is the small target ball that is tossed in the air at the beginning of a game of bocce. The height *h* (in meters) of the pallino after you throw it can be modeled by $h = -4.9t^2 + 3.9t + 1$ where *t* is the time (in seconds) since you released it.
 - **a.** Find the zeros of the function.
 - **b.** Do the zeros of the function have any meaning in this situation? *Explain* your reasoning.
- **72. JUMPING ROBOT** The path of a jumping robot can be modeled by the graph of the equation $y = -10x^2 + 30x$ where *x* and *y* are both measured in feet. On a coordinate plane, the ground is represented by the *x*-axis, and the robot's starting position is the origin.
 - **a.** The robot's maximum height is 22.5 feet. What is the robot's horizontal distance from its starting point when its height is 22.5 feet?
 - **b.** How far has the robot traveled horizontally when it lands on the ground? *Explain* your answer.

- **73.** \star **EXTENDED RESPONSE** The width of a box is 4 inches more than the height *h*. The length is the difference of 9 inches and the height.
 - **a.** Write a polynomial that represents the volume of the box.
 - **b.** The volume of the box is 180 cubic inches. What are all the possible dimensions of the box?
 - **c.** Which dimensions result in a box with the smallest possible surface area? *Explain* your reasoning.

) = See WORKED-OUT SOLUTIONS in Student Resources

- 74. CHALLENGE A plastic cube is used to display an autographed baseball. The cube has an outer surface area of 54 square inches.
 - a. What is the length of an outer edge of the cube?
 - **b.** What is the greatest volume the cube can possibly have? *Explain* why the actual volume inside of the cube may be less than the greatest possible volume.

QUIZ

Factor the polynomial.

1. $x^2 - 400$	2. $18 - 32z^2$	3. $169x^2 - 25y^2$
4. $n^2 - 6n + 9$	5. $100a^2 + 20a + 1$	6. $8r^2 - 40rs + 50s^2$

Factor the polynomial completely.

7. $3x^5 - 75x^3$	8. $72s^4 - 8s^2$	9. $3x^4y - 300x^2y$
10. $a^3 - 4a^2 - 21a$	11. $2h^4 + 28h^3 + 98h^2$	12. $z^3 - 4z^2 - 16z + 64$

Solve the equation.

13. $x^2 + 10x + 25 = 0$	14. $48 - 27m^2 = 0$
15. $w^3 - w^2 - 4w + 4 = 0$	16. $4x^3 - 28x^2 + 40x = 0$
17. $3x^5 - 6x^4 - 45x^3 = 0$	18. $x^3 - 121x = 0$

19. VOLUME The cylinder shown has a volume of 72π cubic inches.

- a. Write a polynomial that represents the volume of the cylinder. Leave your answer in terms of π .
- **b.** Find the radius of the cylinder.

