CHAPTER REVIEW

REVIEW KEY VOCABULARY

- quadratic function
- standard form of a quadratic function
- parabola
- parent quadratic function
- vertex of a parabola
- axis of symmetry

- minimum value
- maximum value
- intercept form of a quadratic function
- quadratic equation
- standard form of a quadratic equation
- completing the square
- vertex form of a quadratic function

@HomeTutor my.hrw.com

Multi-Language GlossaryVocabulary practice

• quadratic formula

VOCABULARY EXERCISES

1. Copy and complete: The line that passes through the vertex and divides a parabola into two symmetric parts is called the <u>?</u>.

Tell whether the function has a *minimum value* or a *maximum value*.

2. $f(x) = 5x^2 - 4x$ **3.** $f(x) = -x^2 + 6x + 2$ **4.** $f(x) = 0.3x^2 - 7.7x + 1.8$

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of this chapter.

9.1 Graph $y = ax^2 + c$

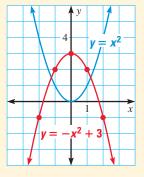
EXAMPLE

Graph $y = -x^2 + 3$. Compare the graph with the graph of $y = x^2$.

Make a table of values for $y = -x^2 + 3$. Then plot the points from the table and draw a smooth curve through the points.

x	-2	-1	0	1	2
у	-1	2	3	2	-1

Both graphs have the same axis of symmetry, x = 0. However, the graph of $y = -x^2 + 3$ has a different vertex than the graph of $y = x^2$, and it opens down. This is because the graph of $y = -x^2 + 3$ is a vertical translation (of 3 units up) and a reflection in the *x*-axis of the graph of $y = x^2$.



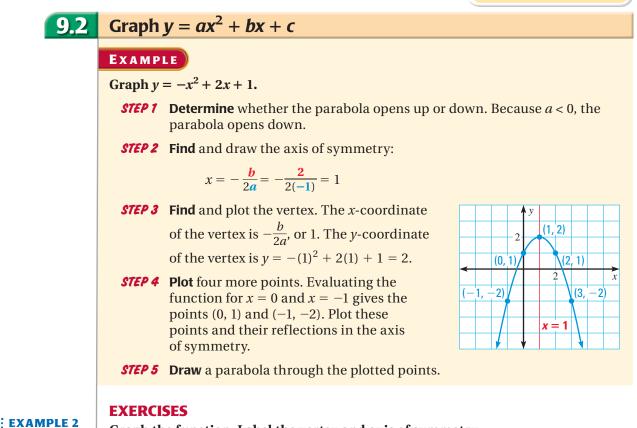
EXERCISES

Graph the function. Compare the graph with the graph of $y = x^2$.

5. $y = -4x^2$

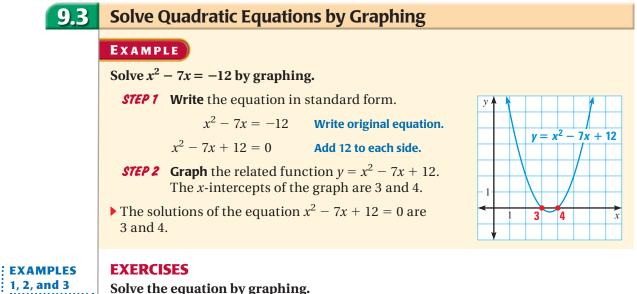
6.
$$y = \frac{1}{3}x^2$$

7. $y = 2x^2 - 1$



Graph the function. Label the vertex and axis of symmetry.

9. $y = 2x^2 - 4x - 3$ 8. $y = x^2 + 4x + 1$ 10. $y = -2x^2 + 8x + 5$



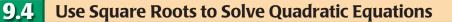
1. 2. and 3 for Exs. 11–13

for Exs. 8–10

11.
$$4x^2 + x + 3 = 0$$

12.
$$x^2 + 2x = -1$$

13. $-x^2 + 8 = 7x$



EXAMPLE

Solve $5(x-6)^2 = 30$. Round the solutions to the nearest hundredth.

 $5(x-6)^{2} = 30$ Write original equation. $(x-6)^{2} = 6$ Divide each side by 5. $x-6 = \pm \sqrt{6}$ Take square roots of each side. $x = 6 \pm \sqrt{6}$ Add 6 to each side.

The solutions of the equation are $6 + \sqrt{6} \approx 8.45$ and $6 - \sqrt{6} \approx 3.55$.

EXERCISES

Solve the equation. Round your solutions to the nearest hundredth, if necessary.

••	14. $6x^2 - 54 = 0$	15. $3x^2 + 7 = 4$	16. $g^2 + 11 = 24$
	17. $7n^2 + 5 = 9$	18. $2(a+7)^2 = 34$	19. $3(w-4)^2 = 5$

9.5

EXAMPLES

1–4 for Exs. 14–19

Solve Quadratic Equations by Completing the Square

EXAMPLE

Solve $3x^2 + 12x = 18$ by completing the square.

$3x^2 + 12x = 18$	Write original equation.
$x^2 + 4x = 6$	Divide each side by 3.
$x^2 + 4x + \mathbf{2^2} = 6 + \mathbf{2^2}$	Add $\left(\frac{4}{2}\right)^2$, or 2 ² , to each side.
$(x+2)^2 = 10$	Write left side as the square of a binomial.
$x + 2 = \pm \sqrt{10}$	Take square roots of each side.
$x = -2 \pm \sqrt{10}$	Subtract 2 from each side.

The solutions of the equation are $-2 + \sqrt{10} \approx 1.16$ and $-2 - \sqrt{10} \approx -5.16$.

EXERCISES

EXAMPLES 2 and 3 for Exs. 20–23 Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.

20. $x^2 - 14x = 51$	21. $2a^2 + 12a - 4 = 0$
22. $2n^2 + 4n + 1 = 10n + 9$	23. $5g^2 - 3g + 6 = 2g^2 + 9$

@HomeTutor

my.hrw.com Chapter Review Practice

9.6

EXAMPLES 1–3 for Exs. 24–29

EXAMPLES

1–3 for Exs. 30–33

Solve Quadratic Equations by the Quadratic Formula

EXAMPLE

Solve $4x^2 + 3x = 1$. $4x^2 + 3x = 1$ $4x^2 + 3x - 1 = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-3 \pm \sqrt{3^2 - 4(4)(-1)}}{2(4)}$ $= \frac{-3 \pm \sqrt{25}}{9} = \frac{-3 \pm 5}{9}$

Write original equation. Write in standard form. Quadratic formula

 $= \frac{-3 \pm \sqrt{3^2 - 4(4)(-1)}}{2(4)}$ Substitute values in the quadratic formula: a = 4, b = 3, and c = -1.

Simplify.

The solutions of the equation are $\frac{-3+5}{8} = \frac{1}{4}$ and $\frac{-3-5}{8} = -1$.

EXERCISES

Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

•	24. $x^2 - 2x - 15 = 0$	25. $2m^2 + 7m - 3 = 0$	26. $-w^2 + 5w = 3$
	27. $5n^2 - 7n = -1$	28. $t^2 - 4 = 6t + 8$	29. $2h - 1 = 10 - 9h^2$

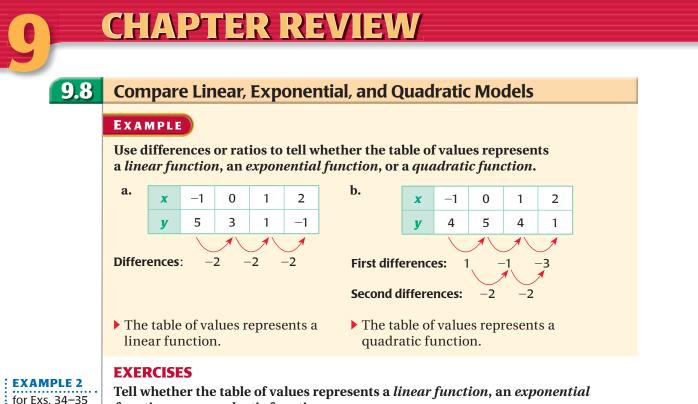
9.7 Solve Systems with Quadratic Equations

EXAMPLE

Solve the system using substitution:y = x + 10Equation 1 $y = x^2 + x + 1$ Equation 2STEP 1Solve one of the equations for y. Equation 1 is already solved for y.STEP 2Substitute x + 10 for y in Equation 2 and solve for x. $y = x^2 + x + 1$ Write original equation 2. $x + 10 = x^2 + x + 1$ Substitute x + 10 for y. $9 = x^2$ Solve for x^2 x = -3 or x = 3Solve for x^2 x = -3 or x = 3Solve for xy = -3 + 7 = 4 and y = 3 + 7 = 10The solutions of the system are (-3, 4) and (3, 10).EXERCISESSolve the system using the substitute or a graphing calculator.

30. y = x + 8 $y = x^2 + 2x + 2$ **31.** x + y = 0 $y = 2x^2 - 3x - 4$ **32.** 2x + y = 1 $y = 3x^2 - x - 1$

33. Solve $4x^2 - 2x - 1 = 2x + 2$ using a system of equations.



35.

function, or a quadratic function.

34.

x	1	2	3	4	5	6
у	1	2	4	8	16	32

x	-	-2	-1	0	1	2	3
y		0	3	6	9	12	15

9.9 Model Relationships

EXAMPLE

Decide which function is increasing more rapidly.

Linear Function 1 has an *x*-intercept of -3 and a *y*-intercept of 2.

Linear Function 2 includes the points in the table below.

x	-2	-1	0	1	2
у	-3	-2.5	-2	-1.5	-1

The points (-3, 0) and (0, 2) are on the graph of Linear Function 1, so its slope is $\frac{2-0}{0-(-3)} = \frac{2}{3}$. The table for Linear Function 2 shows that for each increase of 1 in the value of *x*, there is an increase of 0.5 in the value of *y*. The slope of the graph of Linear Function 2 is $= \frac{0.5}{1} = \frac{1}{2}$. So, Linear Function 1 is increasing more rapidly.

EXAMPLES 1–2 for Exs. 36–37

EXERCISES

- **36.** Linear Function 1 has a *y*-intercept of 3 and a slope of –1. Linear Function 2 has an *x*-intercept of 4 and a *y*-intercept of 3. Which linear function is decreasing more rapidly?
- **37.** The population of a city is increasing at a rate of 2.5% per decade. What type of function would be a good model for this situation?