9 CHAPTER REVIEW

@HomeTutor

- quadratic function
- standard form of a quadratic function
- parabola
- parent quadratic function
- vertex of a parabola
- axis of symmetry
- minimum value
- maximum value
- intercept form of a quadratic function
- quadratic equation
- standard form of a quadratic equation

VOCABULARY EXERCISES

1. Copy and complete: The line that passes through the vertex and divides a parabola into two symmetric parts is called the \qquad
Tell whether the function has a minimum value or a maximum value.
2. $f(x)=5 x^{2}-4 x$
3. $f(x)=-x^{2}+6 x+2$
4. $f(x)=0.3 x^{2}-7.7 x+1.8$

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of this chapter.

9.1 Graph $y=a x^{2}+c$

EXAMPLE

Graph $y=-x^{2}+3$. Compare the graph with the graph of $y=x^{2}$.
Make a table of values for $y=-x^{2}+3$. Then plot the points from the table and draw a smooth curve through the points.

x	-2	-1	0	1	2
y	-1	2	3	2	-1

Both graphs have the same axis of symmetry, $x=0$.
However, the graph of $y=-x^{2}+3$ has a different vertex than the graph of $y=x^{2}$, and it opens down. This is because the graph of $y=-x^{2}+3$ is a vertical translation (of 3 units up) and a reflection in the x-axis of the graph of $y=x^{2}$.

EXAMPLES
1,2 , and 4 for Exs. 5-7

EXERCISES

Graph the function. Compare the graph with the graph of $y=x^{2}$.
5. $y=-4 x^{2}$
6. $y=\frac{1}{3} x^{2}$
7. $y=2 x^{2}-1$

@HomeTutor

my.hrw.com
Chapter Review Practice

9. 2 Graph $y=a x^{2}+b x+c$

EXAMPLE

Graph $y=-x^{2}+2 x+1$.
STEP 1 Determine whether the parabola opens up or down. Because $a<0$, the parabola opens down.

STEP 2 Find and draw the axis of symmetry:

$$
x=-\frac{b}{2 a}=-\frac{2}{2(-1)}=1
$$

STEP 3 Find and plot the vertex. The x-coordinate of the vertex is $-\frac{b}{2 a}$, or 1 . The y-coordinate of the vertex is $y=-(1)^{2}+2(1)+1=2$.

STEP 4 Plot four more points. Evaluating the function for $x=0$ and $x=-1$ gives the points $(0,1)$ and $(-1,-2)$. Plot these points and their reflections in the axis of symmetry.

STEP 5 Draw a parabola through the plotted points.

EXERCISES

EXAMPLE 2. for Exs. 8-10

Graph the function. Label the vertex and axis of symmetry.
8. $y=x^{2}+4 x+1$
9. $y=2 x^{2}-4 x-3$
10. $y=-2 x^{2}+8 x+5$

9.3 Solve Quadratic Equations by Graphing

EXAMPLE

Solve $x^{2}-7 x=-12$ by graphing.

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}-7 x & =-12 & & \text { Write original equation. } \\
x^{2}-7 x+12 & =0 & & \text { Add } 12 \text { to each side. }
\end{aligned}
$$

STEP 2 Graph the related function $y=x^{2}-7 x+12$. The x-intercepts of the graph are 3 and 4.
The solutions of the equation $x^{2}-7 x+12=0$ are 3 and 4.

EXAMPLES

1,2 , and 3
for Exs. 11-13

EXERCISES

Solve the equation by graphing.
11. $4 x^{2}+x+3=0$
12. $x^{2}+2 x=-1$
13. $-x^{2}+8=7 x$

0
 CHAPTER REVIEW

9.4 Use Square Roots to Solve Quadratic Equations

EXAMPLE

Solve $5(x-6)^{2}=30$. Round the solutions to the nearest hundredth.

$$
\begin{aligned}
5(x-6)^{2} & =30 & & \text { Write original equation. } \\
(x-6)^{2} & =6 & & \text { Divide each side by } 5 . \\
x-6 & = \pm \sqrt{6} & & \text { Take square roots of each side. } \\
x & =6 \pm \sqrt{6} & & \text { Add } 6 \text { to each side. }
\end{aligned}
$$

- The solutions of the equation are $6+\sqrt{6} \approx 8.45$ and $6-\sqrt{6} \approx 3.55$.

EXERCISES

Solve the equation. Round your solutions to the nearest hundredth,

EXAMPLES
1-4
for Exs. 14-19 if necessary.
14. $6 x^{2}-54=0$
15. $3 x^{2}+7=4$
16. $g^{2}+11=24$
17. $7 n^{2}+5=9$
18. $2(a+7)^{2}=34$
19. $3(w-4)^{2}=5$

9. 5 Solve Quadratic Equations by Completing the Square

EXAMPLE

Solve $3 x^{2}+12 x=18$ by completing the square.

$$
\begin{aligned}
3 x^{2}+12 x & =18 & & \text { Write original equation. } \\
x^{2}+4 x & =6 & & \text { Divide each side by } 3 . \\
x^{2}+4 x+2^{2} & =6+2^{2} & & \text { Add }\left(\frac{4}{2}\right)^{2}, \text { or } 2^{2}, \text { to each side. } \\
(x+2)^{2} & =10 & & \text { Write left side as the square of a binomial. } \\
x+2 & = \pm \sqrt{10} & & \text { Take square roots of each side. } \\
x & =-2 \pm \sqrt{10} & & \text { Subtract } 2 \text { from each side. }
\end{aligned}
$$

- The solutions of the equation are $-2+\sqrt{10} \approx 1.16$ and $-2-\sqrt{10} \approx-5.16$.

EXERCISES

EXAMPLES
2 and 3
for Exs. 20-23

Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.
20. $x^{2}-14 x=51$
21. $2 a^{2}+12 a-4=0$
22. $2 n^{2}+4 n+1=10 n+9$
23. $5 g^{2}-3 g+6=2 g^{2}+9$

@HomeTutor

my.hrw.com
Chapter Review Practice

9. 6 Solve Quadratic Equations by the Quadratic Formula

EXAMPLE

Solve $4 x^{2}+3 x=1$.

$$
\begin{aligned}
4 x^{2}+3 x & =1 & & \text { Write original equation. } \\
4 x^{2}+3 x-1 & =0 & & \text { Write in standard form. } \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Quadratic formula } \\
& =\frac{-3 \pm \sqrt{3^{2}-4(4)(-1)}}{2(4)} & & \begin{array}{l}
\text { Substitute values in the quadratic formula: } \\
a=4, b=3, \text { and } c=-1 .
\end{array} \\
& =\frac{-3 \pm \sqrt{25}}{8}=\frac{-3 \pm 5}{8} & & \text { Simplify. }
\end{aligned}
$$

- The solutions of the equation are $\frac{-3+5}{8}=\frac{1}{4}$ and $\frac{-3-5}{8}=-1$.

EXERCISES

Use the quadratic formula to solve the equation. Round your solutions to

EXAMPLES
1-3
for Exs. 24-29 the nearest hundredth, if necessary.
24. $x^{2}-2 x-15=0$
25. $2 m^{2}+7 m-3=0$
26. $-w^{2}+5 w=3$
27. $5 n^{2}-7 n=-1$
28. $t^{2}-4=6 t+8$
29. $2 h-1=10-9 h^{2}$

9.7 Solve Systems with Quadratic Equations

EXAMPLE

Solve the system using substitution: $y=x+10 \quad$ Equation 1
$y=x^{2}+x+1 \quad$ Equation 2
STEP 1 Solve one of the equations for y. Equation 1 is already solved for y.
STEP 2 Substitute $x+10$ for y in Equation 2 and solve for x.

$$
\begin{aligned}
y & =x^{2}+x+1 & & \text { Write original equation } 2 . \\
x+10 & =x^{2}+x+1 & & \text { Substitute } x+10 \text { for } y . \\
9 & =x^{2} & & \text { Solve for } \boldsymbol{x}^{2} \\
x & =-3 \text { or } x=3 & & \text { Solve for } \boldsymbol{x}
\end{aligned}
$$

STEP 3 Substitute both -3 and 3 for y in Equation 1

$$
y=-3+7=4 \text { and } y=3+7=10
$$

- The solutions of the system are $(-3,4)$ and $(3,10)$.

EXAMPLES

1-3
for Exs. $30-33$

EXERCISES

Solve the system using the substitution method or a graphing calculator.
30. $y=x+8$
$y=x^{2}+2 x+2$
31. $x+y=0$
$y=2 x^{2}-3 x-4$
32. $2 x+y=1$ $y=3 x^{2}-x-1$
33. Solve $4 x^{2}-2 x-1=2 \mathrm{x}+2$ using a system of equations.

- CRAPTER REVIEW

9. 8 Compare Linear, Exponential, and Quadratic Models

EXAMPLE

Use differences or ratios to tell whether the table of values represents a linear function, an exponential function, or a quadratic function.

EXAMPLE 2 for Exs. $34-35$

EXERCISES

Tell whether the table of values represents a linear function, an exponential function, or a quadratic function.
34.

x	1	2	3	4	5	6
y	1	2	4	8	16	32

35.

x	-2	-1	0	1	2	3
y	0	3	6	9	12	15

9.9 Model Relationships

EXAMPLE

Decide which function is increasing more rapidly.
Linear Function 1 has an x-intercept of -3 and a y-intercept of 2.
Linear Function 2 includes the points in the table below.

x	-2	-1	0	1	2
y	-3	-2.5	-2	-1.5	-1

The points $(-3,0)$ and $(0,2)$ are on the graph of Linear Function 1, so its slope is $\frac{2-0}{0-(-3)}=\frac{2}{3}$. The table for Linear Function 2 shows that for each increase of 1 in the value of x, there is an increase of 0.5 in the value of y. The slope of the graph of Linear Function 2 is $=\frac{0.5}{1}=\frac{1}{2}$. So, Linear Function 1 is increasing more rapidly.

EXAMPLES

1-2
for Exs. $36-37$

EXERCISES

36. Linear Function 1 has a y-intercept of 3 and a slope of -1 . Linear Function 2 has an x-intercept of 4 and a y-intercept of 3 . Which linear function is decreasing more rapidly?
37. The population of a city is increasing at a rate of 2.5% per decade. What type of function would be a good model for this situation?
