9-12

Algebra 1

Chapter Resource Book

SSON 9.1

Name

LESSON 9.1

Study Guide

For use with the lesson "Graph $y = ax^2 + c$ "

GOAL Graph simple quadratic functions.

Vocabulary

A quadratic function is a nonlinear function that can be written in the standard form $y = ax^2 + bx + c$ where $a \neq 0$.

Every quadratic function has a U-shaped graph called a parabola.

The most basic quadratic function in the family of quadratic functions, called the **parent quadratic function**, is $y = x^2$.

The lowest or highest point on a parabola is the vertex.

The line that passes through the vertex and divides the parabola into two symmetric parts is called the **axis of symmetry.**

EXAMPLE 1 Graph $y = ax^2$ when |a| > 1

Graph $y = -6x^2$. Compare the graph with the graph of $y = x^2$.

Solution

STEP 1 Make a table of values for $y = -6x^2$.

x	-2	-1	0	1	2
y	-24	-6	0	-6	-24

STEP 2 Plot the points from the table.

- **STEP 3 Draw** a smooth curve through the points.
- **STEP 4** Compare the graphs of $y = -6x^2$ and $y = x^2$. Both graphs have the same vertex, (0, 0), and the same axis of symmetry, x = 0. However, the graph of $y = -6x^2$ is narrower than the graph of $y = x^2$ and it opens down. This is because the graph of $y = -6x^2$ is a vertical stretch (by a factor of 6) of the graph of $y = x^2$ and a reflection in the *x*-axis of the graph of $y = x^2$.

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Date .

Graph $y = ax^2 + c$ EXAMPLE 3

Graph $y = 3x^2 - 1$. Compare the graph with the graph of $y = x^2$.

STEP 1 Make a table of values for $y = 3x^2 - 1$.

x	-2	-1	0	1	2
y	11	2	-1	2	11

- **STEP 2 Plot** the points from the table.
- **STEP 3** Draw a smooth curve through the points.
- **STEP 4** Compare the graphs of $y = 3x^2 1$ and

 $y = x^2$. Both graphs open up and have the same axis of symmetry, x = 0. However, the graph of $y = 3x^2 - 1$ is narrower and has a lower vertex than the graph of $y = x^2$. This is because the graph of $y = 3x^2 - 1$ is a vertical stretch (by a factor of 3) and a vertical translation (1 unit down) of the graph of $v = x^2$.

Exercises for Examples 1, 2, and 3

Graph the function. Compare the graph with the graph of $y = x^2$.

1.
$$y = -8x^2$$

2. $y = \frac{1}{7}x^2$
3. $y = -\frac{1}{3}x^2$
4. $y = x^2 - 3$
5. $y = \frac{1}{4}x^2 + 2$
6. $y = -\frac{1}{2}x^2 - 3$

 $=\frac{2}{5}x^{2}$

15

 $y = x^2$

 $3x^2 -$

Ś

10

Name