\qquad

GOAL Graph simple quadratic functions.

Vocabulary

A quadratic function is a nonlinear function that can be written in the standard form $y=a x^{2}+b x+c$ where $a \neq 0$.

Every quadratic function has a U-shaped graph called a parabola.
The most basic quadratic function in the family of quadratic functions, called the parent quadratic function, is $y=x^{2}$.

The lowest or highest point on a parabola is the vertex.
The line that passes through the vertex and divides the parabola into two symmetric parts is called the axis of symmetry.

EXAMPLE 1 Graph $y=a x^{2}$ when $|a|>1$

Graph $y=-6 x^{2}$. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{2}$.

Solution

STEP 1 Make a table of values for $y=-6 x^{2}$.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-24	-6	0	-6	-24

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.
STEP 4 Compare the graphs of $y=-6 x^{2}$ and $y=x^{2}$. Both graphs have the same vertex, $(0,0)$, and the same axis of symmetry, $x=0$. However, the graph of $y=-6 x^{2}$ is narrower than the graph of $y=x^{2}$ and it opens down. This is
 because the graph of $y=-6 x^{2}$ is a vertical stretch (by a factor of 6) of the graph of $y=x^{2}$ and a reflection in the x-axis of the graph of $y=x^{2}$.
\qquad

${ }_{\text {Lesson }}^{\text {Lis }}$
 9.1

Study Guide continued
 For use with the lesson "Graph $y=a x^{2}+c$ "

EXAMPLE 2 Graph $y=a x^{2}$ when $|a|<1$

Graph $y=\frac{\mathbf{2}}{5} x^{2}$. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$.
STEP 1 Make a table of values for $y=\frac{2}{5} x^{2}$.

x	-10	-5	0	5	1
\boldsymbol{y}	40	10	0	10	40

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.
STEP 4 Compare the graphs of $y=\frac{2}{5} x^{2}$ and $y=x^{2}$.

Both graphs have the same vertex, $(0,0)$, and the same axis of symmetry, $x=0$. Both graphs open upward. However, the graph of $y=\frac{2}{5} x^{2}$ is wider than the graph of $y=x^{2}$. This is because the graph of $y=\frac{2}{5} x^{2}$ is a vertical shrink (by a factor of $\frac{2}{5}$) of the graph of $y=x^{2}$.

EXAMPLE 3 Graph $y=a x^{2}+c$

Graph $\boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{\mathbf{2}} \mathbf{- 1}$. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$.
STEP 1 Make a table of values for $y=3 x^{2}-1$.

x	-2	-1	0	1	2
y	11	2	-1	2	11

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.

STEP 4 Compare the graphs of $y=3 x^{2}-1$ and
$y=x^{2}$. Both graphs open up and have the same axis of symmetry, $x=0$.
However, the graph of $y=3 x^{2}-1$ is narrower and has a lower vertex than the graph of $y=x^{2}$. This is because the graph of $y=3 x^{2}-1$ is a vertical stretch (by a factor of 3) and a vertical translation (1 unit down) of the graph of $y=x^{2}$.

Exercises for Examples 1, 2, and 3

Graph the function. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$.

1. $y=-8 x^{2}$
2. $y=\frac{1}{7} x^{2}$
3. $y=-\frac{1}{3} x^{2}$
4. $y=x^{2}-3$
5. $y=\frac{1}{4} x^{2}+2$
6. $y=-\frac{1}{2} x^{2}-1$
