Name _

Date

9 Average Rates of Change of Quadratic Functions

Geometrically, the **average rate of change** of a function is equal to the slope of the line through two specified points on the graph of the function.

KEY CONCEPT

Average Rate of Change

Suppose (x_1, y_1) and (x_2, y_2) are two points on a graph of a function, and that $x_1 < x_2$. The average rate of change from x_1 to x_2 is equal to $\frac{y_2 - y_1}{x_2 - x_1}$.

EXAMPLE1 Find the rate of change of a quadratic function

Given the quadratic function with equation $y = x^2 + 4$, find the average rate of change from x = 1 to x = 3.

Solution:

When x = 1, y = 5 and when x = 3, y = 13.

Average rate of change from x = 1 to x = 3 is equal to $\frac{13-5}{3-1} = \frac{8}{2} = 4$.

EXAMPLE2 Compare slope of a line and average rate of change

The slope of the line with equation y = 2x - 1 is 2. Find the average rate of change from x = a to x = b. Show that the average rate of change is equal to the slope of the line.

Solution:

Copyright © Holt McDougal. All rights reserved.

The average rate of change is $\frac{(2b-1) - (2a-1)}{b-a} = \frac{2b-2a}{b-a} = \frac{2(b-a)}{(b-a)} = 2$

The slope of the line is equal to the average rate of change. \blacksquare

EXAMPLE3 Find the interval given the average rate of change

Given the quadratic function with equation $y = x^2 + 2x$, find the value *a* for which the average rate of change from x = 0 to x = a is equal to 4.

Solution:

When x = 0, y = 0 and when x = a, $y = a^2 + 2a$.

Average rate of change from x = 0 to x = a is equal to $\frac{a^2 + 2a - 0}{a - 0} = \frac{a^2 + 2a}{a} = a + 2$. Therefore, a + 2 = 4 or a = 2.

Date

CHAPTER Average Rates of Change of Quadratic

Functions continued

Practice

Find the average rate of change from x = -1 to x = 2 for the function.

1. $y = x^2$ **2.** $y = 3^x$ **3.** $y = -\frac{1}{2}x - 4$ **4.** $y = x^2 - 2x + 3$ **5.** $y = \left(\frac{1}{2}\right)^x - 1$ **6.** $y = 2x^2 - 1$ **7.** y = -10x **8.** $y = (5 - x)^2$

Find the average rate of change of $y = 2x^2 + x$ over the specified interval.

9.
$$x = 2$$
 to $x = 4$
10. $x = -2$ to $x = -4$
11. $x = 0.25$ to $x = 1.25$
12. $x = -\frac{1}{2}$ to $x = 0$

If a > 0, find the value of a for which the average rate of change from x = 0 to x = a is equal to 2.

13.
$$y = 4x^2$$
14. $y = \frac{1}{2}x^2$
15. $y = x^2 + x + \frac{1}{2}$
16. $y = (x - 6)^2$

If a < 0, find the value of a for which the average rate of change from x = a to x = 0 is equal to $-\frac{1}{2}$.

17.
$$y = 2x^2$$
 18. $y = x^2 + x$ **19.** $y = (x + 1)^2$ **20.** $y = x^2 - 1$

Find the average rate of change of the graph of the function from x = -3 to x = -1.

21.

22.	1		4	y				
			3-					
	(-3, 3)\	2-					
		$ \land$	1-					
	-							~
	-4 -3	3 - 2 - 2	Ň		1 2	2	3 4	+ r
	-4-3	3-2- , -1)	1-		12	2 3	3 4	+ x
	-4-3	í Ĩ.,	1 1- 2- 2		12	2	3 4	1 x
	-4 -3	í Ĩ.,	1		1 2	2	3 4	+ x

Copyright © Holt McDougal. All rights reserved.