\qquad

LESSON

Challenge Practice

For use with the lesson "Graph $y=a x^{2}+b x+c$ "
In Exercises 1-5, write the function of the form $y=a x^{2}+b x+c$ whose graph passes through the three given points.

1. $(0,1),(1,0),(2,3)$
2. $(1,2),(0,4),(-1,4)$
3. $(-1,6),(1,2),(3,6)$
4. $(2,0),(1,1),(0,4)$
5. $(1,12),(2,9),(3,0)$

In Exercises 6-10, use the given information to write a function of the form $f(x)=a x^{2}+b x+c$.

6. $f(x)$ has an axis of symmetry at $x=\frac{3}{2}, x$-intercepts at $x=1$ and $x=2$, and a y-intercept at $y=2$.
7. $f(x)$ has an axis of symmetry at $x=\frac{3}{4}, x$-intercepts at $x=-1$ and $x=\frac{5}{2}$, and a y-intercept at $y=5$.
8. $f(x)$ has an axis of symmetry at $x=-\frac{5}{4}, x$-intercepts at $x=-\frac{7}{2}$ and $x=1$, and a y-intercept at $y=-7$.
9. $f(x)$ has an axis of symmetry at $x=\frac{5}{12}, x$-intercepts at $x=\frac{1}{3}$ and $x=\frac{1}{2}$, and a y-intercept at $y=-1$.
10. $f(x)$ has an axis of symmetry at $x=\frac{19}{6}, x$-intercepts at $x=\frac{1}{3}$ and $x=6$, and a y-intercept at $y=6$.
