Extension Graph Quadratic Functions in Intercept Form

GOAL Graph quadratic functions in intercept form.

Key Vocabulary
 - intercept form

You have graphed quadratic functions written in standard form. Quadratic functions can also be written in intercept form, $y=a(x-p)(x-q)$ where $a \neq 0$. In this form, the x-intercepts of the graph can easily be determined.
CC.9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*

KEY CONCEPT
For Your Notebook
Graph of Intercept Form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{p})(\boldsymbol{x}-\boldsymbol{q})$
Characteristics of the graph of $y=a(x-p)(x-q)$:

- The x-intercepts are p and q.
- The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$. So, the axis of symmetry is $x=\frac{p+q}{2}$.
- The parabola opens up if $a>0$ and opens down if $a<0$.

EXAMPLE 1 Graph a quadratic function in intercept form

Graph $y=-(x+1)(x-5)$.

Solution

STEP 1 Identify and plot the x-intercepts. Because $p=-1$ and $q=5$, the x-intercepts occur at the points $(-1,0)$ and $(5,0)$.
STEP 2 Find and draw the axis of symmetry.

$$
x=\frac{p+q}{2}=\frac{-1+5}{2}=2
$$

STEP 3 Find and plot the vertex.
The x-coordinate of the vertex is 2 .
To find the y-coordinate of the vertex, substitute 2 for x and simplify.

$$
y=-(2+1)(2-5)=9
$$

So, the vertex is $(2,9)$.
STEP 4 Draw a parabola through the vertex
 and the points where the x-intercepts occur.

EXAMPLE 2 Graph a quadratic function

Graph $y=2 x^{2}-8$.

Solution

STEP 1 Rewrite the quadratic function in intercept form.

$$
\begin{aligned}
y & =2 x^{2}-8 & & \text { Write original function. } \\
& =2\left(x^{2}-4\right) & & \text { Factor out common factor. } \\
& =2(x+2)(x-2) & & \text { Difference of two squares pattern }
\end{aligned}
$$

STEP 2 Identify and plot the x-intercepts. Because $p=-2$ and $q=2$, the x-intercepts occur at the points $(-2,0)$ and $(2,0)$.
STEP 3 Find and draw the axis of symmetry.

$$
x=\frac{p+q}{2}=\frac{-2+2}{2}=0
$$

STEP 4 Find and plot the vertex.
The x-coordinate of the vertex is 0 .
The y-coordinate of the vertex is:

$$
y=2(0)^{2}-8=-8
$$

So, the vertex is $(0,-8)$.
STEP 5 Draw a parabola through the vertex and
 the points where the x-intercepts occur.

AhimatedAlgebra at my.hrw.com

Practice

: EXAMPLE 1
: Exs. 1-9

EXAMPLE 2
Exs. 10-12

Graph the quadratic function. Label the vertex, axis of symmetry, and x-intercepts.

1. $y=(x+2)(x-3)$
2. $y=(x+5)(x+2)$
3. $y=(x+9)^{2}$
4. $y=-2(x-5)(x+1)$
5. $y=-5(x+7)(x+2)$
6. $y=3(x-6)(x-3)$
7. $y=-\frac{1}{2}(x+4)(x-2)$
8. $y=(x-7)(2 x-3)$
9. $y=2(x+10)(x-3)$
10. $y=-x^{2}+8 x-16$
11. $y=-x^{2}-9 x-18$
12. $y=12 x^{2}-48$
13. Use factoring to determine how many x-intercepts the graph of the function $y=3 x^{2}-12 x+12$ has.
14. Follow the steps below to write an equation of the parabola shown.
a. Find the x-intercepts.
b. Use the values of p and q and the coordinates of the vertex to find the value of a in the equation $y=a(x-p)(x-q)$.
c. Write a quadratic equation in intercept form.

