Name _____

Practice C

For use with the lesson "Solve Quadratic Equations by Graphing"

Solve the equation by graphing.

1. $x^2 = 4$

LESSON 9.3

5. $x^2 + 10x + 25 = 0$

25

15

-5

5

15 x

24

 $-\dot{5}$

2. $x^2 + 3x = 4$

3. $-x^2 - 14x - 49 = 0$

6. $x^2 + 8x + 15 = 0$

9. $-x^2 + 25 = 0$

	25	y y	
	-5-		
-15	-5-5-5-	5	15 x

7. $x^2 + 2 = 0$

		,	y	

		У	
	4		
-			
-6	-2 - 4	2	6 x
	'	1	

Find the zeros of the function by graphing.

10. $f(x) = 2x^2 - 8x - 10$

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

11.
$$f(x) = -3x^2 - 6x +$$

12. $f(x) = 4x^2 - 4x - 8$

8.	x^2	=	4 <i>x</i>	+	12

-15

Name.

Date _

For use with the lesson "Solve Quadratic Equations by Graphing"

Approximate the zeros of the function to the nearest tenth by graphing.

Use the given surface area S of the cylinder to find the radius r to the nearest tenth. (Use 3.14 for π .)

- **19.** Jumping A cat jumps from a countertop 30 inches above the floor. It jumps with an initial vertical velocity of 5 feet per second.
 - **a.** Write and graph a function that models the height *h* (in feet) of the cat *t* seconds after it jumps. *Explain* how you got your model.
 - **b.** How far above the ground is the cat after one half of a second?
 - **c.** How long does it take the cat to reach the ground?
- **20. Basketball** A basketball player throws a ball towards a hoop at a height of 6 feet with an initial vertical velocity of 50 feet per second.
 - **a.** Write and graph a function that models the height *h* (in feet) of the ball *t* seconds after it is thrown.
 - **b.** If the player misses the hoop completely and the ball lands on the ground, how long was the ball in the air?
 - **c.** If an opposing player catches the ball at a height of 5 feet, how long was the ball in the air? *Explain* your reasoning.

