Name _

LESSON 9.3

Date ___

Study Guide

For use with the lesson "Solve Quadratic Equations by Graphing"

Solve quadratic equations by graphing. GOAL

Vocabulary

A quadratic equation is an equation that can be written in the standard form $ax^2 + bx + c = 0$ where $a \neq 0$ and a is called the leading coefficient.

Solve a quadratic equation having two solutions EXAMPLE 1

Solve $x^2 + 5x = 14$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$x^2 + 5x = 14$	Write original equation.
$x^2 + 5x - 14 = 0$	Subtract 14 from each side.

STEP 2 Graph the function $y = x^2 + 5x - 14$.

The *x*-intercepts are -7 and 2.

The solutions of the equation $x^2 + 5x = 14$ are -7 and 2.

CHECK You can check -7 and 2 in the original equation.

 $x^2 + 5x = 14$ $x^2 + 5x = 14$ Write original equation. $(-7)^2 + 5(-7) \stackrel{?}{=} 14$ $(2)^2 + 5(2) \stackrel{?}{=} 14$ Substitute for x. $14 = 14\checkmark \qquad 14 = 14\checkmark$

Simplify. Each solution checks.

10

Solve a quadratic equation having one solution EXAMPLE 2

Solve $x^2 + 25 = 10x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

 $x^2 + 25 = 10x$ Write original equation. $x^2 - 10x + 25 = 0$

Subtract 10x from each side.

STEP 2 Graph the function $y = x^2 - 10x + 25$.

The *x*-intercept is 5.

The solution of the equation $x^2 + 25 = 10x$ is 5.

Name.

LESSON

9.3

Study Guide continued

_____ For use with the lesson "Solve Quadratic Equations by Graphing"

EXAMPLE3 Solve a quadratic equation having no solution

Solve $x^2 + 11 = 5x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

 $x^{2} + 11 = 5x$ Write original equation. $x^{2} - 5x + 11 = 0$ Subtract 5x from each side.

STEP 2 Graph the function $y = x^2 - 5x + 11$.

The graph has no *x*-intercepts.

The equation $x^2 + 11 = 5x$ has no solution.

Exercises for Examples 1, 2, and 3

Solve the equation by graphing.

- **1.** $x^2 = 2x + 15$
- **2.** $x^2 + 4 = -4x$
- **3.** $x^2 + 6x = -4$

EXAMPLE 4 Find the zeros of a quadratic function

Find the zeros of $f(x) = x^2 - 10x + 24$.

Solution

Graph the function $f(x) = x^2 - 10x + 24$.

The *x*-intercepts are 4 and 6.

The zeros of the function are 4 and 6.

Exercises for Example 4

Find the zeros of the function.

4.
$$f(x) = x^2 - 4$$

5.
$$f(x) = x^2 + 5x - 14$$

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Date _