## 9.3 <br> Solve Quadratic Equations by Graphing

Before
Now
Why?

You solved quadratic equations by factoring. You will solve quadratic equations by graphing.

So you can solve a problem about sports, as in Example 6.

Key Vocabulary

- quadratic equation
- $x$-intercept
- roots
- zero of a function

CC.9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*

A quadratic equation is an equation that can be written in the standard form $a x^{2}+b x+c=0$ where $a \neq 0$.

You have used factoring to solve a quadratic equation. You can also use graphing to solve a quadratic equation. Notice that the solutions of the equation $a x^{2}+b x+c=0$ are the $x$-intercepts of the graph of the related function $y=a x^{2}+b x+c$.

Solve by Factoring

$$
\begin{gathered}
x^{2}-6 x+5=0 \\
(x-1)(x-5)=0 \\
x=1 \text { or } x=5
\end{gathered}
$$

## Solve by Graphing

To solve $x^{2}-6 x+5=0$, graph $y=x^{2}-6 x+5$. From the graph you can see that the $x$-intercepts are 1 and 5 .


READING
In this course, solutions refers to real-number solutions.

To solve a quadratic equation by graphing, first write the equation in standard form, $a x^{2}+b x+c=0$. Then graph the related function $y=a x^{2}+b x+c$. The $x$-intercepts of the graph are the solutions, or roots, of $a x^{2}+b x+c=0$.

## EXAMPLE 1 Solve a quadratic equation having two solutions

Solve $x^{2}-2 x=3$ by graphing.

## Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}-2 x=3 & \text { Write original equation. } \\
x^{2}-2 x-3=0 & \text { Subtract } 3 \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-2 x-3$.
The $x$-intercepts are -1 and 3 .

- The solutions of the equation $x^{2}-2 x=3$ are -1 and 3 .


CHECK You can check -1 and 3 in the original equation.

$$
\begin{aligned}
& x^{2}-2 x=3 \quad x^{2}-2 x=3 \quad \text { Write original equation. } \\
& (-1)^{2}-2(-1) \stackrel{?}{=} 3 \\
& (3)^{2}-2(3) \stackrel{?}{=} 3 \\
& 3=3 \checkmark \\
& 3=3 \checkmark \\
& \text { Substitute for } \boldsymbol{x} \text {. } \\
& \text { Simplify. Each solution checks. }
\end{aligned}
$$

Solve $-x^{2}+2 x=1$ by graphing.

## Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
-x^{2}+2 x=1 & \text { Write original equation. } \\
-x^{2}+2 x-1=0 & \text { Subtract } 1 \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=-x^{2}+2 x-1$. The $x$-intercept is 1 .

- The solution of the equation $-x^{2}+2 x=1$ is 1 .



## EXAMPLE 3 Solve a quadratic equation having no solution

AVOID ERRORS
Do not confuse $y$-intercepts and $x$-intercepts. Although the graph has a $y$-intercept, it does not have any $x$-intercepts.

Solve $x^{2}+7=4 x$ by graphing.

## Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+7 & =4 x & & \text { Write original equation. } \\
x^{2}-4 x+7 & =0 & & \text { Subtract } 4 x \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-4 x+7$. The graph has no $x$-intercepts.

- The equation $x^{2}+7=4 x$ has no solution.



## Guided Practice

Solve the equation by graphing.

1. $x^{2}-6 x+8=0$
2. $x^{2}+x=-1$
3. $-x^{2}+6 x=9$

## KEY CONCEPT

## Number of Solutions of a Quadratic Equation



A quadratic equation has two solutions if the graph of its related function has two $x$-intercepts.


A quadratic equation has one solution if the graph of its related function has one $x$-intercept.


A quadratic equation has no real solution if the graph of its related function has no $x$-intercepts.

FINDING ZEROS Because a zero of a function is an $x$-intercept of the function's graph, you can use the function's graph to find the zeros of a function.

## EXAMPLE 4 Find the zeros of a quadratic function

## ANOTHER WAY

You can find the zeros of a function by factoring:
$f(x)=x^{2}+6 x-7$
$0=x^{2}+6 x-7$
$0=(x+7)(x-1)$
$x=-7$ or $x=1$

Find the zeros of $f(x)=x^{2}+6 x-7$.

## Solution

Graph the function $f(x)=x^{2}+6 x-7$.
The $x$-intercepts are -7 and 1 .

- The zeros of the function are -7 and 1 .

CHECK Substitute -7 and 1 in the original function.

$$
\begin{aligned}
& f(-7)=(-7)^{2}+6(-7)-7=0 \checkmark \\
& f(\mathbf{1})=(\mathbf{1})^{2}+6(\mathbf{1})-7=0 \checkmark
\end{aligned}
$$



APPROXIMATING ZEROS The zeros of a function are not necessarily integers. To approximate zeros, look at the signs of the function values. If two function values have opposite signs, then a zero falls between the $x$-values that correspond to the function values.

## EXAMPLE 5 Approximate the zeros of a quadratic function

Approximate the zeros of $f(x)=x^{2}+4 x+1$ to the nearest tenth.

## Solution

STEP 1 Graph the function $f(x)=x^{2}+4 x+1$. There are two $x$-intercepts: one between -4 and -3 and another between -1 and 0 .

STEP 2 Make a table of values for $x$-values between -4 and -3 and between -1 and 0 using an increment of 0.1. Look for a change in the signs of the function values.


## INTERPRET

 FUNCTION VALUES The function value that is closest to 0 indicates the $x$-value that best approximates a zero of the function.| $x$ | -3.9 | -3.8 | -3.7 | -3.6 | -3.5 | -3.4 | -3.3 | -3.2 | -3.1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 0.61 | 0.24 | $-\mathbf{0 . 1 1}$ | -0.44 | -0.75 | -1.04 | -1.31 | -1.56 | -1.79 |


| $x$ | -0.9 | -0.8 | -0.7 | -0.6 | -0.5 | -0.4 | $-\mathbf{0 . 3}$ | -0.2 | -0.1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{f}(x)$ | -1.79 | -1.56 | -1.31 | -1.04 | -0.75 | -0.44 | $-\mathbf{0 . 1 1}$ | 0.24 | 0.61 |

- In each table, the function value closest to 0 is -0.11 . So, the zeros of $f(x)=x^{2}+4 x+1$ are about -3.7 and about -0.3 .


## Guided Practice for Examples 4 and 5

4. Find the zeros of $f(x)=x^{2}+x-6$.
5. Approximate the zeros of $f(x)=-x^{2}+2 x+2$ to the nearest tenth.

## EXAMPLE 6 Solve a multi-step problem

USE A GRAPHING CALCULATOR When entering $h=-16 t^{2}+40 t+6.5$ in a graphing calculator, use $y$ instead of $h$ and $x$ instead of $t$.

SPORTS An athlete throws a shot put with an initial vertical velocity of 40 feet per second as shown.
a. Write an equation that models the height $h$ (in feet) of the shot put as a function of the time $t$ (in seconds) after it is thrown.
b. Use the equation to find the time that the shot put is in the air.

## Solution

a. Use the initial vertical velocity and the release height to write a vertical motion model.


$$
\begin{array}{ll}
h=-16 t^{2}+v t+s & \text { Vertical motion model } \\
h=-16 t^{2}+40 t+6.5 & \text { Substitute } 40 \text { for } v \text { and } 6.5 \text { for } s .
\end{array}
$$

b. The shot put lands when $h=0$. To find the time $t$ when $h=0$, solve $0=-16 t^{2}+40 t+6.5$ for $t$.

To solve the equation, graph the related function $h=-16 t^{2}+40 t+6.5$ on a graphing calculator. Use the trace feature to find the $t$-intercepts.

- There is only one positive $t$-intercept. The shot put is in the air for about 2.6 seconds.



## Guided Practice for Example 6

6. WHAT IF? In Example 6, suppose the initial vertical velocity is 30 feet per second. Find the time that the shot put is in the air.

## Relating Solutions of Equations, $x$-Intercepts of Graphs, and Zeros of Functions

## Solutions of an Equation

The solutions of the equation $-\boldsymbol{x}^{\mathbf{2}}+\mathbf{8 x} \mathbf{- 1 2}=\mathbf{0}$ are 2 and 6 .
x-Intercepts of a Graph
The $x$-intercepts of the graph of $\boldsymbol{y}=-\boldsymbol{x}^{2}+\mathbf{8 x}-\mathbf{1 2}$ occur
where $\boldsymbol{y}=\mathbf{0}$, so the $x$-intercepts are 2 and 6 , as shown.

## Zeros of a Function

The zeros of the function $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{x}^{\mathbf{2}}+\mathbf{8 x}-\mathbf{1 2}$ are the values of $x$ for which $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$, so the zeros are 2 and 6.


# 9.3 EXERCISES 

## SKILL PRACTICE

EXAMPLES
1,2 , and 3
for Exs. 3-21

EXAMPLE 4 for Exs. 22-30

1. VOCABULARY Write $2 x^{2}+11=9 x$ in standard form.
2. $\star$ WRITING Is $3 x^{2}-2=0$ a quadratic equation? Explain.

SOLVING EQUATIONS Solve the equation by graphing.
3. $x^{2}-5 x+4=0$
4. $x^{2}+5 x+6=0$
5. $x^{2}+6 x=-8$
6. $x^{2}-4 x=5$
7. $x^{2}-16=6 x$
8. $x^{2}-12 x=-35$
9. $x^{2}-6 x+9=0$
10. $x^{2}+8 x+16=0$
11. $x^{2}+10 x=-25$
12. $x^{2}+81=18 x$
13. $-x^{2}-14 x=49$
14. $-x^{2}+16 x=64$
15. $x^{2}-5 x+7=0$
16. $x^{2}-2 x+3=0$
17. $x^{2}+x=-2$
18. $\frac{1}{5} x^{2}-5=0$
19. $\frac{1}{2} x^{2}+2 x=6$
20. $-\frac{1}{4} x^{2}-8=x$
21. ERROR ANALYSIS The graph of the function related to the equation $0=x^{2}-4 x+4$ is shown. Describe and correct the error in solving the equation.

> The only solution of the equation $0=x^{2}-4 x+4$ is 4 .


FINDING ZEROS Find the zeros of the function.
22. $f(x)=x^{2}+4 x-5$
23. $f(x)=x^{2}-x-12$
24. $f(x)=x^{2}-5 x-6$
25. $f(x)=x^{2}+3 x-10$
26. $f(x)=-x^{2}+8 x+9$
27. $f(x)=x^{2}+x-20$
28. $f(x)=-x^{2}-7 x+8$
29. $f(x)=x^{2}-12 x+11$
30. $f(x)=-x^{2}+4 x+12$

SOLVING EQUATIONS Solve the equation by graphing.
31. $2 x^{2}+x=3$
32. $4 x^{2}-5=8 x$
33. $4 x^{2}-4 x+1=0$
34. $x^{2}+x=-\frac{1}{4}$
35. $3 x^{2}+1=2 x$
36. $5 x^{2}+x+3=0$

EXAMPLE 5
for Exs. $37-46$

APPROXIMATING ZEROS Approximate the zeros of the function to the nearest tenth.
37. $f(x)=x^{2}+4 x+2$
38. $f(x)=x^{2}-5 x+3$
39. $f(x)=x^{2}-2 x-5$
40. $f(x)=-x^{2}-3 x+3$
41. $f(x)=-x^{2}+7 x-5$
42. $f(x)=-x^{2}-5 x-2$
43. $f(x)=2 x^{2}+x-2$
44. $f(x)=-3 x^{2}+8 x-2$
45. $f(x)=5 x^{2}+30 x+30$
46. $\star$ MULTIPLE CHOICE Which function has a zero between -3 and -2 ?
(A) $f(x)=-3 x^{2}+4 x+11$
(B) $f(x)=4 x^{2}-3 x-11$
(C) $f(x)=3 x^{2}+4 x-11$
(D) $f(x)=3 x^{2}+11$

CHALLENGE Use the given surface area $S$ of the cylinder to find the radius $r$ to the nearest tenth. (Use 3.14 for $\pi$.)
47. $S=251 \mathrm{ft}^{2}$

48. $S=716 \mathrm{~m}^{2}$

49. $S=1074 \mathrm{~cm}^{2}$


## Problem Solving

EXAMPLE 6 for Exs. 50-52

GRAPHING CALCULATOR You may wish to use a graphing calculator to complete the following Problem Solving exercises.
50. SOCCER The height $y$ (in feet) of a soccer ball after it is kicked can be modeled by the graph of the equation $y=-0.04 x^{2}+1.2 x$ where $x$ is the horizontal distance (in feet) that the ball travels. The ball is not touched, and it lands on the ground. Find the distance that the ball was kicked.
51. SURVEYING To keep water off a road, the road's surface is shaped like a parabola as in the cross section below. The surface of the road can be modeled by the graph of $y=-0.0017 x^{2}+0.041 x$ where $x$ and $y$ are measured in feet. Find the width of the road to the nearest tenth of a foot.

52. DIVING During a cliff diving competition, a diver begins a dive with his center of gravity 70 feet above the water. The initial vertical velocity of his dive is 8 feet per second.
a. Write an equation that models the height $h$ (in feet) of the diver's center of gravity as a function of time $t$ (in seconds).
b. How long after the diver begins his dive does his center of gravity reach the water?
53. $\star$ SHORT RESPONSE An arc of water sprayed from the nozzle of a fountain can be modeled by the graph of $y=-0.75 x^{2}+6 x$ where $x$ is the horizontal distance (in feet) from the nozzle and $y$ is the vertical distance (in feet). The diameter of the circle formed by the arcs on the surface of the water is called the display diameter. Find the display diameter of the fountain. Explain your reasoning.

54. $\star$ EXTENDED RESPONSE Two softball players are practicing catching fly balls. One player throws a ball to the other. She throws the ball upward from a height of 5.5 feet with an initial vertical velocity of 40 feet per second for her teammate to catch.
a. Write an equation that models the height $h$ (in feet) of the ball as a function of time $t$ (in seconds) after it is thrown.
b. If her teammate misses the ball and it lands on the ground, how long was the ball in the air?
c. If her teammate catches the ball at a height of 5.5 feet, how long was the ball in the air? Explain your reasoning.
55. CHALLENGE A stream of water from a fire hose can be modeled by the graph of $y=-0.003 x^{2}+0.58 x+3$ where $x$ and $y$ are measured in feet. A firefighter is holding the hose 3 feet above the ground, 137 feet from a building. Will the stream of water pass through a window if the top of the window is 26 feet above the ground? Explain.

## QUZ

Graph the function. Compare the graph with the graph of $y=x^{2}$.

1. $y=-\frac{1}{2} x^{2}$
2. $y=2 x^{2}-5$
3. $y=-x^{2}+3$

## Graph the function. Label the vertex and axis of symmetry.

4. $y=x^{2}+5$
5. $y=-5 x^{2}+1$
6. $y=x^{2}+4 x-2$
7. $y=2 x^{2}-12 x+5$
8. $y=-\frac{1}{2} x^{2}+2 x-5$
9. $y=-4 x^{2}-10 x+2$

## Solve the equation by graphing.

10. $x^{2}-7 x=8$
11. $x^{2}+6 x+9=0$
12. $x^{2}+10 x=11$
13. $x^{2}-7=-6 x$
14. $-x^{2}+x-1=0$
15. $x^{2}-4 x+9=0$

Find the zeros of the function.
16. $f(x)=x^{2}+3 x-10$
17. $f(x)=x^{2}-8 x+12$
18. $f(x)=-x^{2}+5 x+14$

