\qquad
\qquad
9.4

Practice B

For use with the lesson "Use Square Roots to Solve Quadratic Equations"

Solve the equation.

1. $6 x^{2}-24=0$
2. $8 x^{2}-128=0$
3. $x^{2}-13=23$
4. $3 x^{2}-60=87$
5. $2 x^{2}-33=17$
6. $5 x^{2}-200=205$
7. $4 x^{2}-125=-25$
8. $7 x^{2}-50=13$
9. $\frac{1}{2} x^{2}-\frac{1}{2}=0$

Solve the equation. Round the solutions to the nearest hundredth.
10. $x^{2}+15=23$
11. $x^{2}-16=-13$
12. $12-x^{2}=17$
13. $3 x^{2}-8=7$
14. $9-x^{2}=9$
15. $4+5 x^{2}=34$
16. $48=14+2 x^{2}$
17. $8 x^{2}=50$
18. $3 x^{2}+23=18$
19. $(x-3)^{2}=5$
20. $(x+2)^{2}=10$
21. $3(x-4)^{2}=18$

Use the given area \boldsymbol{A} of the circle to find the radius \boldsymbol{r} or the diameter \boldsymbol{d} of the circle. Round the answer to the nearest hundredth, if necessary.

22. $A=169 \pi \mathrm{~m}^{2}$
23. $A=38 \pi$ in. 2
24. $A=45 \pi \mathrm{~cm}^{2}$

25. Flower Seed A manufacturer is making a cylindrical can that will hold and dispense flower seeds through small holes in the top of the can. The manufacturer wants the can to have a volume of 42 cubic inches and be 6 inches tall. What should the diameter of the can be? (Hint: Use the formula for volume, $V=\pi r^{2} h$, where V is the volume, r is the radius, and h is the height.) Round your answer to the nearest inch.
26. Stockpile You can find the diameter D (in feet) of a conical pile of sand, dirt, etc. by using the formula $V=0.2618 h D^{2}$ where h is the height of the pile (in feet) and V is the volume of the pile (in cubic feet). Find the diameter of each stockpile in the table. Round your answers to the nearest foot.

Stockpile	Height (ft)	Diameter (ft)	Volume $\left(\mathbf{f t}^{\mathbf{3}}\right)$
A	10	$?$	68
B	15	$?$	230
C	20	$?$	545

