Practice C

For use with the lesson "Use Square Roots to Solve Quadratic Equations"

Solve the equation.

1.
$$4x^2 - 29 = 7$$

2.
$$2x^2 - 50 = 48$$

3.
$$5x^2 - 120 = -40$$

4.
$$\frac{1}{2}x^2 - 2 = 0$$

5.
$$\frac{1}{3}x^2 - 8 = 4$$

6.
$$0.1x^2 - 6.4 = 0$$

Solve the equation. Round the solutions to the nearest hundredth.

7.
$$4x^2 - 8 = 12$$

8.
$$7x^2 - 43 = 34$$

9.
$$2x^2 + 7 = 1$$

10.
$$3x^2 + 23 = 74$$

11.
$$6x^2 - 27 = 9$$

11.
$$6x^2 - 27 = 9$$
 12. $5(x - 8)^2 = 15$

13.
$$4(x+9)^2 = 24$$

14.
$$\frac{1}{2}(x-4)^2 = 2$$

14.
$$\frac{1}{2}(x-4)^2 = 7$$
 15. $\frac{3}{4}(x+7)^2 = 9$

16.
$$\frac{2}{5}(x-4)^2 = 16$$

16.
$$\frac{2}{5}(x-4)^2 = 16$$
 17. $7x^2 - 34 = 2x^2 + 16$ **18.** $24 = 3(x^2 + 7)$

18.
$$24 = 3(x^2 + 7)$$

19.
$$9x^2 + 3 = 4(3x^2 - 6)$$
 20. $\left(\frac{x - 4}{5}\right)^2 = 36$ **21.** $(16x^2 - 8)^2 = 81$

20.
$$\left(\frac{x-4}{5}\right)^2 = 36$$

21.
$$(16x^2 - 8)^2 = 81$$

Solve the equation without graphing.

22.
$$x^2 + 6x + 9 = 16$$

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved

23.
$$x^2 - 4x + 4 = 100$$

23.
$$x^2 - 4x + 4 = 100$$
 24. $x^2 - 10x + 25 = 121$

25.
$$2x^2 - 28x + 98 = 72$$

25.
$$2x^2 - 28x + 98 = 72$$
 26. $-3x^2 + 6x - 3 = -27$ **27.** $\frac{1}{2}x^2 + 4x + 8 = 8$

27.
$$\frac{1}{2}x^2 + 4x + 8 = 8$$

28. Plant Food A manufacturer is making a cylindrical canister that will hold granulated plant food. The manufacturer wants the canister to have a volume of 2036 cubic centimeters and be 18 centimeters tall. What should the diameter of the canister be? (Hint: Use the formula for volume, $V = \pi r^2 h$, where V is the volume, r is the radius, and h is the height.) Round your answer to the nearest centimeter.

18 cm

29. Speed To estimate the speed s (in feet per second) of a car involved in an accident, investigators use the formula $s = \frac{11}{2} \sqrt{\frac{3}{4}} \ell$ where ℓ represents the length (in feet) of tire skid marks on the pavement. After an accident, an investigator measures skid