Name _

Date ____

LESSON 9.4

Study Guide For use with the lesson "Use Square Roots to Solve Quadratic Equations"

GOAL Solve a quadratic equation by finding square roots.

Solve quadratic equations EXAMPLE 1

Solve the equation.

b. $11y^2 = 11$ **c.** $z^2 + 13 = 5$ **a.** $x^2 - 7 = 9$

Solution

a. $x^2 - 7 = 9$	Write original equation.
$x^2 = 16$	Add 7 to each side.
$x = \pm \sqrt{16}$	Take square roots of each side.
$=\pm4$	Simplify.

The solutions are -4 and 4.

b. $11y^2 = 11$	Write original equation.
$y^2 = 1$	Divide each side by 11.
$y = \pm \sqrt{1}$	Take square roots of each side.
$=\pm 1$	Simplify.

The solutions are -1 and 1.

c. $z^2 + 13 = 5$	Write original equation.
$z^2 = -8$	Subtract 13 from each side.

Negative real numbers do not have real square roots. So, there is no solution.

Take square roots of a fraction EXAMPLE 2

Solve $9m^2 = 169$.

Solution

$9m^2 = 169$	Write original equation.
$m^2 = \frac{169}{9}$	Divide each side by 9.
$m = \pm \sqrt{\frac{169}{9}}$	Take square roots of each side.
$m = \pm \frac{13}{3}$	Simplify.
The solutions are $-\frac{13}{3}$ and $\frac{13}{3}$.	

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Date ___

EXAMPLE3 Approximate solutions of a quadratic equation

Solve $2x^2 + 5 = 15$. Round the solutions to the nearest hundredth.

Solution

$2x^2 + 5 = 15$	Write original equation.
$2x^2 = 10$	Subtract 5 from each side.
$x^2 = 5$	Divide each side by 2.
$x = \pm \sqrt{5}$	Take square roots of each side.
$x \approx \pm 2.24$	Use a calculator. Round to the nearest hundredth.

The solutions are about -2.24 and about 2.24.

Exercises for Examples 1, 2, and 3

Solve the equation.

1.	$w^2 - 9 = 0$	2.	$4r^2 - 7 = 9$	3.	$5s^2 + 13 = 9$
4.	$36x^2 = 121$	5.	$16m^2 + 81 = 81$	6.	$4q^2 - 225 = 0$

Solve the equation. Round the solutions to the nearest hundredth.

7.	$7x^2 - 8 = 13$	8. $-6y^2 + 15 = -15$	9. $4z^2 + 7 = 12$
----	-----------------	------------------------------	---------------------------

EXAMPLE 4 Solve a quadratic equation

Solve $3(x + 3)^2 = 39$. Round the solutions to the nearest hundredth.

Solution

$3(x+3)^2 = 39$	Write original equation.
$(x+3)^2 = 13$	Divide each side by 3.
$x + 3 = \pm \sqrt{13}$	Take square roots of each side.
$x = -3 \pm \sqrt{13}$	Subtract 3 from each side.

The solutions are $-3 + \sqrt{13} \approx 0.61$ and $-3 - \sqrt{13} \approx -6.61$.

Exercises for Example 4

Solve the equation.

10.
$$5(x-1)^2 = 40$$
 11. $2(y+4)^2 = 18$ **12.** $4(z-5)^2 = 32$