Date _

Study Guide 9.5

For use with the lesson "Solve Quadratic Equations by Completing the Square"

GOAL Solve quadratic equations by completing the square.

Vocabulary

For an expression of the form $x^2 + bx$, you can add a constant *c* to the expression so that the expression $x^2 + bx + c$ is a perfect square trinomial. This process is called **completing the square.**

EXAMPLE 1 Complete the square

Find the value of c that makes the expression $x^2 + 7x + c$ a perfect square trinomial. Then write the expression as the square of a binomial.

Solution

STEP 1 Find the value of c. For the expression to be a perfect square trinomial, c needs to be the square of half the coefficient of x.

$$c = \left(\frac{7}{2}\right)^2 = \frac{49}{4}$$

Find the square of half the coefficient of *x*.

STEP 2 Write the expression as a perfect square trinomial. Then write the expression as the square of a binomial.

$$x^{2} + 7x + c = x^{2} + 7x + \frac{49}{4}$$
 Substitute $\frac{49}{4}$ f or c.
= $\left(x + \frac{7}{2}\right)^{2}$ Square of a binomial

EXAMPLE2 Solve a quadratic equation

Solve $x^2 + 14x = -13$ by completing the square.

Solution

$$x^{2} + 14x = -13$$
Write original equation.

$$x^{2} + 14x + (7)^{2} = -13 + 7^{2}$$
Add $\left(\frac{14}{2}\right)^{2}$, or 7², to each side.

$$(x + 7)^{2} = -13 + 7^{2}$$
Write left side as the square of a binomial.

$$(x + 7)^{2} = 36$$
Simplify the right side.

$$x + 7 = \pm 6$$
Take square roots of each side.

$$x = -7 \pm 6$$
Subtract 7 from each side.

The solutions of the equation are -7 + 6 = -1 and -7 - 6 = -13.