## Extension

## Key Vocabulary <br> - vertex form

## COMMON CORE

CC.9-12.F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

## Graph Quadratic Functions in Vertex Form

GOAL Graph quadratic functions in vertex form.
You have graphed quadratic functions in standard form. Quadratic functions can also be written in vertex form, $y=a(x-h)^{2}+k$ where $a \neq 0$. In this form, the vertex of the graph can be easily determined.

## KEY CONCEPT

For Your Notebook
Graph of Vertex Form $\boldsymbol{y}=\boldsymbol{a}(\mathbf{x}-\boldsymbol{h})^{\mathbf{2}}+\boldsymbol{k}$
The graph of $y=a(x-h)^{2}+k$ is the graph of $y=a x^{2}$ translated $h$ units horizontally and $k$ units vertically.
Characteristics of the graph of
$y=a(x-h)^{2}+k:$

- The vertex is $(h, k)$.
- The axis of symmetry is $x=h$.
- The graph opens up if $a>0$, and the graph opens down if $a<0$.



## EXAMPLE 1 Graph a quadratic function in vertex form

Graph $y=-(x+2)^{2}+3$.

## Solution

STEP 1 Identify the values of $a, h$, and $k: a=-1, h=-2$, and $k=3$.
Because $a<0$, the parabola opens down.
STEP 2 Draw the axis of symmetry, $x=-2$.
STEP 3 Plot the vertex $(h, k)=(-2,3)$.
STEP 4 Plot four points. Evaluate the function for two $x$-values less than the $x$-coordinate of the vertex.
$x=-3: y=-(-3+2)^{2}+3=2$
$\boldsymbol{x}=-5: y=-(-5+2)^{2}+3=-6$
Plot the points $(-3,2)$ and $(-5,-6)$ and their reflections, $(-1,2)$ and $(1,-6)$, in the axis of symmetry.


STEP 5 Draw a parabola through the plotted points.

## EXAMPLE 2 Graph a quadratic function

Graph $y=x^{2}-8 x+11$.

## Solution

STEP 1 Write the function in vertex form by completing the square.

$$
\begin{aligned}
y & =x^{2}-8 x+11 & & \text { Write original function. } \\
y+\square & =\left(x^{2}-8 x+\square\right)+11 & & \text { Prepare to complete the square. } \\
y+16 & =\left(x^{2}-8 x+16\right)+11 & & \text { Add }\left(\frac{-8}{2}\right)^{2}=(-4)^{2}=16 \text { to each side. } \\
y+16 & =(x-4)^{2}+11 & & \text { Write } x^{2}-8 x+16 \text { as a square of } \\
y & =(x-4)^{2}-5 & & \text { a binomial. }
\end{aligned}
$$

STEP 2 Identify the values of $a, h$, and $k: a=1, h=4$, and $k=-5$. Because $a>0$, the parabola opens up.
STEP 3 Draw the axis of symmetry, $x=4$.
STEP 4 Plot the vertex $(h, k)=(4,-5)$.
STEP 5 Plot four more points. Evaluate the function for two $x$-values less than the $x$-coordinate of the vertex.
$\boldsymbol{x}=3: y=(3-4)^{2}-5=-4$
$\boldsymbol{x}=1: y=(1-4)^{2}-5=4$
Plot the points $(3,-4)$ and $(1,4)$ and their reflections, $(5,-4)$ and (7, 4), in the axis of symmetry.


STEP 6 Draw a parabola through the plotted points.

## PRACTICE

EXAMPLE for Exs. 1-6

Graph the quadratic function. Label the vertex and axis of symmetry.

1. $y=(x+2)^{2}-5$
2. $y=-(x-4)^{2}+1$
3. $y=x^{2}+3$
4. $y=3(x-1)^{2}-2$
5. $y=-2(x+5)^{2}-2$
6. $y=-\frac{1}{2}(x+4)^{2}+4$

EXAMPLE 2 for Exs. 7-12

Write the function in vertex form, then graph the function. Label the vertex and axis of symmetry.
7. $y=x^{2}-12 x+36$
8. $y=x^{2}+8 x+15$
9. $y=-x^{2}+10 x-21$
10. $y=2 x^{2}-12 x+19$
11. $y=-3 x^{2}-6 x-1$
12. $y=-\frac{1}{2} x^{2}-6 x-21$
13. Write an equation in vertex form of the parabola shown. Use the coordinates of the vertex and the coordinates of a point on the graph to write the equation.


