\qquad

Lesson
9.6

Challenge Practice

For use with the lesson "Solve Quadratic Equations by the Quadratic Formula"

In Exercises 1-5, the solution to a quadratic equation is given. Write an equation in standard form that has the solution.

Example: $x=\frac{-2 \pm \sqrt{3}}{5}$
Solution: The solution to the quadratic equation $a x^{2}+b x+c=0$ is given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Letting $-b=-2$ gives $b=2$, letting $2 a=5$ gives $a=\frac{5}{2}$,
and letting $b^{2}-4 a c=3$ gives $c=\frac{b^{2}-3}{4 a}$. Substituting the values for a and b you get
$c=\frac{1}{10}$. So the equation $\frac{5}{2} x^{2}+2 x+\frac{1}{10}=0$ has the desired solutions.

1. $x=\frac{-4 \pm \sqrt{10}}{3}$
2. $x=\frac{-6 \pm \sqrt{-5}}{7}$
3. $x=\frac{1 \pm \sqrt{0}}{3}$
4. $x=\frac{-17 \pm \sqrt{21}}{15}$
5. $x=\frac{11 \pm \sqrt{11}}{11}$

In Exercises 6-8, use the following information.

If the graph of a parabola has x-intercepts, then the axis of symmetry of the parabola can be found at the position that is the average of the two x-intercepts. Use this concept to find the axis of symmetry for the parabola modeled by the equation.
6. $y=3 x^{2}+5 x+2$
7. $y=2 x^{2}-4 x+1$
8. $y=6 x^{2}+x-1$

Algebra 1

