LESSON 9.7 Date _

Study Guide

For use with the lesson "Solve Systems with Quadratic Equations"

GOAL Solve systems of equations that include a quadratic equation.

EXAMPLE 1 Use the substitution method

Solve the system: y = x + 4 Equation 1 $y = 2x^2 + x - 4$ Equation 2

Solution

STEP 1 Solve the linear equation for *y*. Equation 1 is already solved for *y*.

STEP 2 Substitute x + 4 for y in Equation 2 and solve for x.

$y = 2x^2 + x - 4$	Write original Equation 2.
$x + 4 = 2x^2 + x - 4$	Substitute $x + 4$ for y .
$0 = 2x^2 - 8$	Subtract <i>x</i> and 4 from each side
0 = 2(x - 2)(x + 2)	Factor.
x - 2 = 0 or $x + 2 = 0$	Zero-product property
x = 2 or $x = -2$	Solve for <i>x</i> .

STEP 3 Substitute both -2 and 2 for x in Equation 1 and solve for y.

y = x + 4	y = x + 4
y = -2 + 4	y = 2 + 4
y = 2	y = 6

The solutions are (-2, 2) and (2, 6).

EXAMPLE2 Use a graphing calculator to solve a system

Solve the system: y = x - 1 Equation 1 $y = x^2 + 4x + 3$ Equation 2

Solution

- **STEP 1** Enter each equation into your graphing calculator. Set $Y_1 = x 1$ and $Y_2 = -x^2 + 4x + 3$.
- **STEP 2** Graph the system. Set a good viewing window. For this system, a good viewing window is $-10 \le x \le 10$ and $-10 \le y \le 10$.
- **STEP 3** Use the *Intersect* function to find the coordinates of each point of intersection. The points of intersection are (-1, -2) and (4, 3).

The solutions are (-1, -2) and (4, 3). *continued*

Name .

LESSON

9.7

Date _

Study Guide continued

For use with the lesson "Solve Systems with Quadratic Equations"

STEP 4 Check the solutions. For example, check (-1, -2).

y = x - 1	$y = -x^2 + 4x + 3$
$-2 \stackrel{?}{=} -1 - 1$	$-2 \stackrel{?}{=} -(-1)^2 + 4(-1) + 3$
-2 = -2 🗸	-2 = -2 🗸

Exercises for Examples 1 and 2

Solve the system of equations first by using the substitution method and then by using a graphing calculator.

1.	$y = -x^2 - x - 2$	2.	$y = 3 - x^2$	3.	$y = 2x^2 - x + 1$
	y = -2x - 4		y = 5x + 9		y = 3x + 7
4.	$y = 5x^2 - x + 2$	5.	$y = -2x^2 + 3x + 1$	6.	$y = x^2 - 4x - 8$
	y = -6x + 2		y = 9x + 1		y = -2x
7.	$y = -x^2 - 3x$	8.	$y = 3x^2 + 2x + 1$	9.	$y = x^2 + 7x - 1$
	y = -2x - 12		y = -x + 7		y = 3x + 11

EXAMPLE3 Solve an equation using a system

Solve the equation $3x^2 + x - 3 = -2x + 3$ using a system of equations. Check your solution(s).

Solution

STEP 1 Write a system of two equations by setting both the left and right sides of the given equation each equal to *y*.

$y = 3x^2 + x - 3$	Equation 1
y = -2x + 3	Equation 2

- **STEP 2** Graph Equation 1 and Equation 2 on the same coordinate plane or on a graphing calculator.
- **STEP 3** The *x*-value of each point of intersection is a solution of the original equation. The graphs intersect at (-2, 7) and (1, 1).

The solutions of the equation are x = -2 and x = 1.

STEP 4 Check the solutions by substituting both solutions into the original equation.

Exercises for Example 3

Solve the equation using a system of equations.

10.	$4x + 5 = -x^2 + 2x + 5$	11.	$-4x + 3 = 2x^2 - 4x + 1$
12.	$6x + 3x^2 = 3x + 6$	13.	$-8 = -x^2 - 2x$
14.	$7 - x^2 = -x - 5$	15.	$x^2 + 7x - 15 = -x - 22$

