Use the Vertex Formula

Consider the graph of $y = -3x^2 - 6x + 4$.

a. Write the equation of the axis of symmetry.

In
$$y = -3x^2 - 6x + 4$$
, $a = -3$ and $b = -6$.

$$x = -\frac{b}{2a}$$
 Equation for the axis of symmetry of a parabola

$$x = -\frac{-6}{2(-3)}$$
 or -1 $a = -3$ and $b = -6$

The equation of the axis of symmetry is x = -1.

b. Find the coordinates of the vertex.

Since the equation of the axis of symmetry is x = -1 and the vertex lies on the axis, the *x*-coordinate for the vertex is -1.

$$y = -3x^2 - 6x + 4$$
 Original equation

$$y = -3(-1)^2 - 6(-1) + 4$$
 $x = -1$

$$y = -3 + 6 + 4$$
 Simplify.

$$y = 7$$
 Add.

The vertex is at (-1, 7).

c. Identify the vertex as a maximum or minimum.

Since the coefficient of the x^2 term is negative, the parabola opens downward and the vertex is a maximum point.

d. Graph the function.

You can use the symmetry of the parabola to help you draw its graph. On a coordinate plane, graph the vertex and the axis of symmetry. Choose a value for x other than -1. For example, choose 1 and find the y-coordinate that satisfies the equation.

$$y = -3x^2 - 6x + 4$$
 Original equation $y = -3(1)^2 - 6(1) + 4$ Let $x = 1$. Simplify.

Graph (1, -5). Since the graph is symmetrical about its axis of symmetry x = -1, you can find another point on the other side of the axis of symmetry. The point at (1, -5) is 2 units to the right of the axis. Go 2 units to the left of the axis and plot the point (-3, -5). Repeat this for several other points. Then sketch the parabola.

