Practice

Factors and Greatest Common Factors

Find the factors of each number. Then classify each number as *prime* or *composite*.

Find the prime factorization of each integer.

$$12. -384$$

Factor each monomial completely.

13.
$$30d^5$$

14.
$$-72mn$$

15.
$$81b^2c^3$$

16,
$$145abc^3$$

17.
$$168pq^2r$$

18.
$$-121x^2yz^2$$

Find the GCF of each set of monomials.

25.
$$24fg^5$$
, $56f^3g$

26.
$$72r^2s^2$$
, $36rs^3$

27.
$$15a^2b$$
, $35ab^2$

28.
$$28m^3n^2$$
, $45pq^2$

29.
$$40xy^2$$
, $56x^3y^2$, $124x^2y^3$

30.
$$88c^3d$$
, $40c^2d^2$, $32c^2d$

GEOMETRY For Exercises 31 and 32, use the following information.

The area of a rectangle is 84 square inches. Its length and width are both whole numbers.

- 31. What is the minimum perimeter of the rectangle?
- 32. What is the maximum perimeter of the rectangle?

RENOVATION For Exercises 33 and 34, use the following information.

Ms. Baxter wants to tile a wall to serve as a splashguard above a basin in the basement. She plans to use equal-sized tiles to cover an area that measures 48 inches by 36 inches.

- 33. What is the maximum-size square tile Ms. Baxter can use and not have to cut any of the tiles?
- 34. How many tiles of this size will she need?