Practice

Graphing Quadratic Functions

Use a table of values to graph each function.

1.
$$v = -x^2 + 2$$

2.
$$y = x^2 - 6x + 3$$

3.
$$y = -2x^2 - 8x - 5$$

Write the equation of the axis of symmetry, and find the coordinates of the vertex of the graph of each function. Identify the vertex as a maximum or minimum. Then graph the function.

4.
$$y = -x^2 + 3$$

5.
$$y = -2x^2 + 8x - 3$$
 6. $y = 2x^2 + 8x + 1$

6.
$$v = 2x^2 + 8x + 1$$

PHYSICS For Exercises 7-9, use the following information.

Miranda throws a set of keys up to her brother, who is standing on a third-story balcony with his hands 38 feet above the ground. If Miranda throws the keys with an initial velocity of 40 feet per second, the equation $h = -16t^2 + 40t + 5$ gives the height h of the keys after t seconds.

- 7. How long does it take the keys to reach their highest point?
- 8. How high do the keys reach?
- **9.** Will her brother be able to catch the keys? Explain.

BASEBALL For Exercises 10-12, use the following information.

A player hits a baseball at a 45° angle with the ground with an initial velocity of 80 feet per second from a height of three feet above the ground. The equation $h = -0.005x^2 + x + 3$ gives the path of the ball, where h is the height and x is the horizontal distance the ball travels.

- **10.** What is the equation of the axis of symmetry?
- 11. What is the maximum height reached by the baseball?
- 12. An outfielder catches the ball three feet above the ground. How far has the ball traveled horizontally when the outfielder catches it?