\qquad
\qquad
\qquad

Skills Readiness
 26 Parallel Lines and Transversals

Corresponding angles:	$\angle 1$ and $\angle 5, \angle 2$ and $\angle 6$,
Alternate interior angles:	$\angle 3$ and $\angle 7, \angle 4$ and $\angle 8, \angle 5, \angle 4$ and $\angle 6$
Same-side interior angles:	$\angle 3$ and $\angle 6, \angle 4$ and $\angle 5$
Vertical angles:	$\angle 1$ and $\angle 3, \angle 2$ and $\angle 4$,
	$\angle 5$ and $\angle 7, \angle 6$ and $\angle 8$

Parallel line properties: If two parallel lines are cut by a transversal, then:

1. Corresponding angles are congruent;
2. Alternate interior angles are congruent; and
3. Same-side interior angles are supplementary.

Also recall: Vertical angles are congruent and straight angles have measures of 180°.
Example: If the measure of $\angle 2$ above is 118°, what is the measure of $\angle 6$? $\angle 4$? $\angle 3$?
Answers: $\angle 6=118^{\circ}$ (corresponding); $\angle 4=118^{\circ}$ (vertical); $\angle 3=62^{\circ}$ (straight)

Practice on Your Own
 Name the missing angle.

1. $\angle d$ corresponds to \angle \qquad .
2. $\angle b$ forms a straight angle with \angle \qquad and \angle \qquad .
3. $\angle c$ is a same-side interior angle with \angle \qquad .
4. $\angle c$ is an alternate interior angle with \qquad .
5. $\angle f$ is vertical to \angle \qquad .

Find the measure of each numbered angle.
6. $\angle 1=$ \qquad
7. $\angle 2=$ \qquad
8. $\angle 3=$ \qquad
9. $\angle 4=$ \qquad
10. $\angle 5=$ \qquad
11. $\angle 6=$ \qquad
12. $\angle 7=$ \qquad

Check

Name or find the measure of the angle as indicated.
13. $\angle j$ is vertical to \qquad .
14. $\angle f$ corresponds to \angle \qquad .
15. $\angle g$ is a same-side interior angle with \angle \qquad .
16. $\angle k$ is an alternate interior angle with \angle \qquad .

17. The measure of $\angle 1$ is \qquad .
18. The measure of $\angle 2$ is \qquad .
19. The measure of $\angle 3$ is \qquad .
20. The measure of $\angle 4$ is \qquad .

