Skills Readiness

Parallel Lines and Transversals

 $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, Corresponding angles: $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$ $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$ Alternate interior angles: Same-side interior angles: $\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$ Vertical angles: $\angle 1$ and $\angle 3$, $\angle 2$ and $\angle 4$, \angle 5 and \angle 7, \angle 6 and \angle 8

Parallel line properties: If two parallel lines are cut by a transversal, then:

- 1. Corresponding angles are congruent;
- 2. Alternate interior angles are congruent; and
- 3. Same-side interior angles are supplementary.

Also recall: Vertical angles are congruent and straight angles have measures of 180°.

Example: If the measure of $\angle 2$ above is 118°, what is the measure of $\angle 6$? $\angle 4$? $\angle 3$? Answers: $\angle 6 = 118^{\circ}$ (corresponding); $\angle 4 = 118^{\circ}$ (vertical); $\angle 3 = 62^{\circ}$ (straight)

Practice on Your Own

Name the missing angle.

- **1.** $\angle d$ corresponds to \angle _____.
- **2.** $\angle b$ forms a straight angle with \angle and \angle and \angle .
- **3.** $\angle c$ is a same-side interior angle with \angle _____.
- **4.** $\angle c$ is an alternate interior angle with \angle _____.
- **5.** $\angle f$ is vertical to \angle _____.

Find the measure of each numbered angle.

Check

Name or find the measure of the angle as indicated.

14.
$$\angle f$$
 corresponds to \angle _____.

15.
$$\angle g$$
 is a same-side interior angle with \angle _____.

16.
$$\angle k$$
 is an alternate interior angle with \angle _____.

17. The measure of
$$\angle 1$$
 is _____. **18.** The measure of $\angle 2$ is _____.

19. The measure of
$$\angle 3$$
 is _____. **20.** The measure of $\angle 4$ is _____.