\qquad
\qquad Class \qquad

28 Angles in Polygons

Polygon Angle Measures				
Polygon	Triangle	Quadrilateral	Pentagon	General Polygon
Number of Sides	3	4	5	n
Sum of Interior Angles	180°	360°	540°	$180(n-2)$
Sum of Exterior Angles	360°	360°	360°	360
Regular Polygons (all sides and angles are congruent)				
Each Interior Angle	$\frac{180}{3}=60^{\circ}$	$\frac{360}{4}=90^{\circ}$	$\frac{540}{5}=108^{\circ}$	$\frac{180(n-2)}{n}$
Each Exterior Angle	$\frac{360}{3}=120^{\circ}$	$\frac{360}{4}=90^{\circ}$	$\frac{360}{5}=72^{\circ}$	$\frac{360}{n}$

Example: Find the value of x in pentagon $A B C D E$.
Answer: Since the polygon is a pentagon, the sum of the interior angles is 540°. Two of the angles are right angles (90° each) so the remaining three angles have a sum of $540-2(90)=540-180=360$. With respect to x, the sum of the remaining three angles is $x+2 x+2 x=5 x$.

Solve $5 x=360$ by dividing both sides of the equation by $5: \frac{5 x}{5}=\frac{360}{5} ; x=72$.

Practice on Your Own

Find the indicated angle measure(s).

1. the sum of the interior angle measures of PQRSTUVW
2. the measure of each interior angle of PQRSTUVW \qquad
3. the sum of the exterior angle measures of PQRSTUVW \qquad
4. the measure of each exterior angle of PQRSTUVW

5. the measure of each interior angle of a regular polygon that has 7 sides \qquad
6. the measure of each exterior angle of a regular polygon that has 7 sides \qquad
7. the value of x in quadrilateral $A B C D$ \qquad

Check

Find the indicated angle measure(s).
8. the sum of the interior angle measures of regular hexagon JKLMNO \qquad
9. the measure of each interior angle of regular hexagon JKLMNO \qquad
10. the sum of the exterior angle measures of regular hexagon JKLMNO \qquad
11. the measure of each exterior angle of regular hexagon JKLMNO \qquad

