Skills Readiness

Solve and Graph Inequalities

To solve an inequality, you need to find the numbers that make the inequality a true statement.

You use the same process to solve an inequality that you do to solve an equation. The only difference is that when you multiply or divide by a negative number, you must reverse the inequality symbol.

Example 1: Solve x - 7 < -3 and graph its solution.

$$x - 7 < -3$$

$$x - 7 + 7 < -3 + 7$$
 Add 7 to both sides. $x < 4$

Graph the solution (numbers less than 4). Remember to use an open circle since $x \neq 4$ and shade to the left.

Example 2: Solve $-3x \le 6$ and graph its solution.

$$\frac{-3x}{-3} \le \frac{6}{-3}$$

 $\frac{-3x}{-3} \le \frac{6}{-3}$ Divide both sides by -3.

$$x \ge -2$$

 $x \ge -2$ Simplify. Reverse the inequality symbol since you divided by a negative number.

Graph the solution (numbers greater than or equal to -2). Remember to use a closed circle and shade to the right.

Practice on Your Own

Solve and graph each inequality.

1.
$$x - 3 \ge 2$$

3.
$$\frac{1}{3}y \le -2$$

4.
$$b-4<-5$$

6.
$$-4t \le -16$$

7.
$$p + 9 > 5$$

8.
$$-\frac{1}{2}x > 1$$

9.
$$5m \le -15$$

Check

Solve and graph each inequality.

10.
$$x + 8 \le 11$$

12.
$$d-3 \ge -2$$

13.
$$\frac{1}{5}y < 2$$

14.
$$7x \ge -28$$

12.
$$u - 3 \ge -2$$

14.
$$7x \ge -28$$

15.
$$-\frac{1}{4}m > -2$$

