Name _____

Skills Readiness

82 *Complete the Square*

Completing the square makes it possible to solve a quadratic equation by creating a perfect square trinomial on one side of the equation so that you can find the square root of both sides.

If a quadratic is in the form $x^2 + bx$, follow these steps to complete the square and write the trinomial as the square of a binomial.

Step1: Add the quantity $\left(\frac{b}{2}\right)^2$ to the expression.	Step 2: Write the trinomial as $\left(x + \frac{b}{2}\right)^2$.
Example: $x^2 - 18x + $ $b = -18$, so $\frac{b}{2} = -9$ and $\left(\frac{b}{2}\right)^2 = (-9)^2 = 81$ $x^2 - 18x + 81$	Since $\frac{b}{2} = -9$, rewrite the expression as $(x - 9)^2$.

Practice on Your Own

Complete the square for each expression. Write the resulting expression as the square of a binomial.

1. $x^2 + 8x +$	2. $x^2 - 12x +$	3. $x^2 + x + $
4. $x^2 - 10x +$	5. $x^2 - 22x +$	6. $x^2 - 3x + $
7. $x^2 + 14x + $	8. $x^2 - 24x +$	9. $x^2 + 9x +$

Check

Complete the square for each expression. Write the resulting expression as the square of a binomial.

10. $x^2 + 6x + $	11. $x^2 - 16x +$	12. $x^2 + 5x +$
13. $x^2 - 20x + $	14. $x^2 + 2x + $	15. $x^2 - 7x + $