Step 2: Try $n = 1$ next.	$1+1 \ge 1-1 \rightarrow 2 \ge 0$ True		
Step 3: Try $n = -1$ next. $1 + (-1) \ge 1 - (-1) \rightarrow 0 \ge 2$ False			
STOP: $n = -1$ is your counterexample.			
If $n = -1$ had produced another true statement, then you would try a positive and			
negative fraction, such as $\frac{1}{2}$ and $-\frac{1}{2}$. Then larger numbers, both positive and			
negative, until you found a number that produced a false statement.			
Practice on Your Own Find a counterexample to show that each statement is false.			
1. $n^3 + 2n = 3n^2$, where <i>n</i> is a real number 2. $-\frac{1}{n} \le \frac{1}{n}$, where <i>n</i> is a real number			
1. $11 + 211 - 311$, where <i>t</i> is a least 1.		2. $-\overline{n} \ge \overline{n}$, where <i>n</i> is a real	
	<i>n</i> =		<i>n</i> =
n 3		n	
3. $\frac{n}{3} \neq \frac{3}{n}$, where <i>n</i> is a real number		4. $\frac{n}{2} < 2n$, where <i>n</i> is a real number	
	<i>n</i> =		<i>n</i> =
5. $-(n + 1) \neq n + 1$, where <i>n</i> is a real number 6. $n^2 \ge n$, where <i>n</i> is a real number			
	<i>n</i> =		<i>n</i> =
Check			
Find a counterexample to show that each statement is false.			
7. $\frac{1}{n} \neq \frac{1}{n^2}$, where <i>n</i> is a real number	er ≠ 0	8. $n^3 \ge n^2$, where <i>n</i> is a real	number
	<i>n</i> =		<i>n</i> =
9. $\frac{n}{5} < 5n$, where <i>n</i> is a real number 10. $-3n \neq 3n$, where <i>n</i> is a real number			
	<i>n</i> =		<i>n</i> =
Copyright © by Holt McDougal. All rights reserved.	19	O Holt Ma	Dougal Algebra 1

Skills Readiness

89 *Counterexamples*

Strategy to find a counterexample: Step 1: Always try n = 0 first.

Definition: A counterexample to a statement is a particular example or instance of the statement that is NOT true.

Name _____ Date _____ Class _____

Example: Find a counterexample to show that the statement below is false. Statement: $1 + n \ge 1 - n$, where *n* is a real number.

 $1 + 0 \ge 1 - 0 \implies 1 \ge 1$ True