Study Guide and Intervention

Solving Quadratic Equations by Completing the Square

Find the Square Root An equation such as $x^2 - 4x + 4 = 5$ can be solved by taking the square root of each side.

Example 1

Solve $x^2 - 2x + 1 = 9$.

Round to the nearest tenth if necessary.

$$x^{2} - 2x + 1 = 9$$

$$(x - 1)^{2} = 9$$

$$\sqrt{(x - 1)^{2}} = \sqrt{9}$$

$$|x - 1| = \sqrt{9}$$

$$x - 1 = \pm 3$$

$$x - 1 + 1 = \pm 3 + 1$$

$$x = 1 \pm 3$$

$$x = 1 + 3 \text{ or } x = 1 - 3$$

The solution set is $\{-2, 4\}$.

Example 2

Solve $x^2 - 4x + 4 = 5$.

Round to the nearest tenth if necessary.

$$x^{2} - 4x + 4 = 5$$

$$(x - 2)^{2} = 5$$

$$\sqrt{(x - 2)^{2}} = \sqrt{5}$$

$$|x - 2| = \sqrt{5}$$

$$x - 2 = \pm\sqrt{5}$$

$$x - 2 + 2 = \pm\sqrt{5} + 2$$

$$x = 2 \pm\sqrt{5}$$

Use a calculator to evaluate each value of x.

$$x = 2 + \sqrt{5}$$
 or $x = 2 - \sqrt{5}$
 ≈ 4.2 ≈ -0.2

The solution set is $\{-0.2, 4.2\}$.

Exercises

Solve each equation by taking the square root of each side. Round to the nearest tenth if necessary.

$$1. x^2 + 4x + 4 = 9$$

$$2. m^2 + 12m + 36 = 1$$

$$3. r^2 - 6r + 9 = 16$$

$$4. x^2 - 2x + 1 = 25$$

$$5. x^2 - 8x + 16 = 5$$

6.
$$x^2 - 10x + 25 = 8$$

$$7. c^2 - 4c + 4 = 7$$

8.
$$p^2 + 16p + 64 = 3$$

$$9. x^2 + 8x + 16 = 9$$

10.
$$x^2 + 6x + 9 = 4$$

11.
$$a^2 + 8a + 16 = 10$$

12.
$$y^2 - 12y + 36 = 5$$

$$13. x^2 + 10x + 25 = 1$$

14.
$$y^2 + 14y + 49 = 6$$

15.
$$m^2 - 8m + 16 = 2$$

$$16. x^2 + 12x + 36 = 10$$

17.
$$a^2 - 14a + 49 = 3$$

$$18. y^2 + 8y + 16 = 7$$

Study Guide and Intervention (continued)

Solving Quadratic Equations by Completing the Square

Complete the Square Since few quadratic expressions are perfect square trinomials, the method of **completing the square** can be used to solve some quadratic equations. Use the following steps to complete the square for a quadratic expression of the form $ax^2 + bx$.

Step 1 Find
$$\frac{b}{2}$$
.

Step 2 Find
$$\left(\frac{b}{2}\right)^2$$
.

Step 3 Add
$$\left(\frac{b}{2}\right)^2$$
 to $ax^2 + bx$.

Solve $x^2 + 6x + 3 = 10$ by completing the square.

$$x^2 + 6x + 3 = 10$$
 Original equation

$$x^2+6x+3-3=10-3$$
 Subtract 3 from each side.

$$x^2 + 6x = 7$$
 Simplify.

$$x^2 + 6x + 9 = 7 + 9$$
 Since $(\frac{6}{2})^2 = 9$, add 9 to each side.

$$(x+3)^2 = 16$$
 Factor $x^2 + 6x + 9$.

$$x + 3 = \pm 4$$
 Take the square root of each side.

$$x=-3\pm 4$$
 Simplify.

$$x = -3 + 4$$
 or $x = -3 - 4$

The solution set is $\{-7, 1\}$.

Exercises

Solve each equation by completing the square. Round to the nearest tenth if necessary.

1.
$$t^2 - 4t + 3 = 0$$

$$2. y^2 + 10y = -9$$

$$3. y^2 - 8y - 9 = 0$$

$$4. x^2 - 6x = 16$$

5.
$$p^2 - 4p - 5 = 0$$

6.
$$x^2 - 12x = 9$$

$$7. c^2 + 8c = 20$$

8.
$$p^2 = 2p + 1$$

$$9. x^2 + 20x + 11 = -8$$

10.
$$x^2 - 1 = 5x$$

11.
$$a^2 = 22a + 23$$

12.
$$m^2 - 8m = -7$$

$$13. x^2 + 10x = 24$$

$$14. a^2 - 18a = 19$$

$$15. b^2 + 16b = -16$$

16.
$$4x^2 = 24 + 4x$$

17.
$$2m^2 + 4m + 2 = 8$$

592

$$18.\ 4k^2 = 40k + 44$$