Study Guide and Intervention

Graphing Quadratic Functions

Graph Quadratic Functions

Quadratic **Function**

a function described by an equation of the form $f(x) = ax^2 + bx + c$, where $a \neq 0$

Example: $y = 2x^2 + 3x + 8$

The degree of a quadratic function is 2, and the exponents are positive. Graphs of quadratic functions have a general shape called a parabola. A parabola opens upward and has a **minimum point** when the value of a is positive, and a parabola opens downward and has a **maximum point** when the value of a is negative.

Example 1

Use a table of values to graph $y = x^2 - 4x + 1$.

Graph the ordered pairs in the table and connect them with a smooth curve.

Example 2 Use a table of values to graph $y = -x^2 - 6x - 7$.

Graph the ordered pairs in the table and connect them with a smooth curve.

Exercises

Use a table of values to graph each function.

$$1. y = x^2 + 2$$

$$2. v = -x^2 - 4$$

3.
$$y = x^2 - 3x + 2$$

Study Guide and Intervention (continued)

Graphing Quadratic Functions

Symmetry and Vertices Parabolas have a geometric property called **symmetry**. That is, if the figure is folded in half, each half will match the other half exactly. The vertical line containing the fold line is called the **axis of symmetry**.

Axis of Symmetry For the parabola $y = ax^2 + bx + c$, where $a \ne 0$, the line $x = -\frac{b}{2a}$ is the axis of symmetry. Example: The axis of symmetry of $y = x^2 + 2x + 5$ is the line x = -1.

The axis of symmetry contains the minimum or maximum point of the parabola, the vertex.

Example

Consider the graph of $y = 2x^2 + 4x + 1$.

a. Write the equation of the axis of symmetry.

In $y = 2x^2 + 4x + 1$, a = 2 and b = 4. Substitute these values into the equation of the axis of symmetry.

$$x=-\frac{b}{2a}$$

$$x = -\frac{4}{2(2)} = -1$$

The axis of symmetry is x = -1.

c. Identify the vertex as a maximum or a minimum.

Since the coefficient of the x^2 -term is positive, the parabola opens upward, and the vertex is a minimum point.

b. Find the coordinates of the vertex.

Since the equation of the axis of symmetry is x = -1 and the vertex lies on the axis, the x-coordinate of the vertex is -1.

$$y=2x^2+4x+1$$

Original equation

$$y = 2(-1)^2 + 4(-1) + 1$$
 Substitute. $y = 2(1) - 4 + 1$ Simplify.

Simplify.

$$y = -1$$

The vertex is at (-1, -1).

d. Graph the function.

Exercises

Write the equation of the axis of symmetry, and find the coordinates of the vertex of the graph of each function. Identify the vertex as a maximum or a minimum. Then graph the function.

1.
$$y = x^2 + 3$$

2.
$$y = -x^2 - 4x - 4$$

$$3. v = x^2 + 2x + 3$$

