Study Guide and Intervention

Solving Quadratic Equations by Graphing

Solve by Graphing

Quadratic Equation

an equation of the form $ax^2 + bx + c = 0$, where $a \neq 0$

The solutions of a quadratic equation are called the **roots** of the equation. The roots of a quadratic equation can be found by graphing the related quadratic function $f(x) = ax^2 + bx + c$ and finding the x-intercepts or **zeros** of the function.

Example 1

Solve $x^2 + 4x + 3 = 0$ by graphing.

Graph the related function $f(x) = x^2 + 4x + 3$. The equation of the axis of symmetry is

$$x = -\frac{4}{2(1)}$$
 or -2 . The vertex is at $(-2, -1)$.

Graph the vertex and several other points on either side of the axis of symmetry.

To solve $x^2 + 4x + 3 = 0$, you need to know where the value of f(x) = 0. This occurs at the x-intercepts, -3 and -1.

The solutions are -3 and -1.

Example 2

Solve $x^2 - 6x + 9 = 0$ by graphing.

Graph the related function $f(x) = x^2 - 6x + 9$. The equation of the axis of symmetry is

 $x = \frac{6}{2(1)}$ or 3. The vertex is at (3, 0). Graph

the vertex and several other points on either side of the axis of symmetry.

To solve $x^2 - 6x + 9 = 0$, you need to know where the value of f(x) = 0. The vertex of the parabola is the x-intercept. Thus, the only solution is 3.

Exercises

Solve each equation by graphing.

$$1. x^2 + 7x + 12 = 0$$

$$2. x^2 - x - 12 = 0$$

$$3. x^2 - 4x + 5 = 0$$

Study Guide and Intervention (continued)

Solving Quadratic Equations by Graphing

Estimate Solutions The roots of a quadratic equation may not be integers. If exact roots cannot be found, they can be estimated by finding the consecutive integers between which the roots lie.

Example Solve $x^2 + 6x + 6 = 0$ by graphing. If integral roots cannot be found, estimate the roots by stating the consecutive integers between which the roots lie.

Graph the related function $f(x) = x^2 + 6x + 6$.

1	
X	f(x)
-5	1
-4	-2
-3	-3
-2	-2
-1	1

Notice that the value of the function changes from negative to positive between the x-values of -5 and -4 and between -2 and -1.

The x-intercepts of the graph are between -5 and -4 and between -2 and -1. So one root is between -5 and -4, and the other root is between -2 and -1.

Exercises

Solve each equation by graphing. If integral roots cannot be found, estimate the roots by stating the consecutive integers between which the roots lie.

$$1. x^2 + 7x + 9 = 0$$

$$2. x^2 - x - 4 = 0$$

3.
$$x^2 - 4x + 6 = 0$$

$$4. x^2 - 4x - 1 = 0$$

$$5. 4x^2 - 12x + 3 = 0$$

$$6. x^2 - 2x - 4 = 0$$

